# Minimizing the total number of shadows in secret sharing schemes based on extended neighborhood coronas 

Raúl M. Falcón ${ }^{(1)}$, N. Mohanapriya ${ }^{(2)}$ and V. Aparna ${ }^{(2)}$
${ }^{(1)}$ Department of Applied Maths I, Universidad de Sevilla, Spain. rafalgan@us.es
${ }^{(2)}$ PG and Research Dept. of Mathematics, Kongunadu Arts and Science College, India.

Santander, October 19-21, 2022.


## CONTENTS

© Preliminaries.
(0) Minimizing the number of shadows.

- Further work.


## CONTENTS

© Preliminaries.
(0) Minimizing the number of shadows.

- Further work.


## $(n, t)$-threshold secret sharing scheme.

[Blakley, 1979] Safeguarding cryptographic keys. Int. Workshop Managing Requirements Knowledge, 313-317.
[Shamir, 1979] How to share a secret. Comm. ACM 22, 612-613.


George R. Blakley Jr.


Adi Shamir


- $n$ shadows.
- Any authorized subgroup sharing at least $t$ distinct shadows can reconstruct the secret, but no subgroup sharing less than $t$ shadows can do it.


## $(n, t)$-threshold secret sharing scheme.



- Schemes based on finite, simple and connected undirected graphs.
- Vertex = Participant.
- Edge $=$ Proximity relationship such that cooperation is possible.
- One round of communication: Each participant receives the shadows of her/his neighbors.
- n-proper coloring: One shadow (color) per participant so that no two neighbors have the same shadow.


## $t$-dynamic proper $n$-coloring.



$$
(n, t)=(4,3)
$$

- [Kim and Ok, 2017]: Every $t$-dynamic proper $n$-coloring describes a shadow allocation of an ( $n, t+1$ )-threshold secret sharing scheme.
- [Montgomery, 2001]: The number of different colors among the neighbors of a vertex is at least $t$, or all different if the vertex has less than $t$ neighbors.

$$
\begin{equation*}
\left|c\left(N_{G}(v)\right)\right| \geq \min \left\{t,\left|N_{G}(v)\right|\right\} . \tag{1}
\end{equation*}
$$

After just one round of communication, each participant can either reconstruct the secret, or obtain a different shadow from each one of his/her neighbors.

## $t$-dynamic proper n-coloring.



$$
(n, t)=(4,3)
$$

- Problem 1. Which is the minimum number of rounds of communication that are necessary to ensure that the secret can be reconstructed by all the participants?
- Problem 2. Which is the minimum number of distinct shadows into which the secret has to split to ensure condition (1)?


## $t$-dynamic proper $n$-coloring.



$$
(n, t)=(4,3)
$$

Problem 1: Minimum number of rounds of communication.

- 1 , if $t \leq \delta(G)$.
- Upper bounded by the diameter of the graph, otherwise.


## $t$-dynamic proper n-coloring.



Problem 2: Minimum number of shadows.

- $\chi_{t}(G)$ : The $t$-dynamic chromatic number is the minimum number of shadows into which the secret has to split to ensure this coloring.
- Computing this number constitutes the $t$-dynamic coloring problem of the graph.
- If $t=1$, then it coincides with the classical chromatic number $\chi(G)$.

- Corona product [Frucht and Harary, 1970]: $G \odot H$.

Every vertex $v_{i}$ in $G$ is joined to all the vertices in the $i^{\text {th }}$ copy of $H$.

- Neighborhood corona product [Indulal, 2011]: $G \star H$. Every neighbor of the vertex $v_{i}$ in $G$ is joined to every vertex in the $i^{\text {th }}$ copy of $H$.
- Extended neighborhood corona product [Adiga et al., 2016]: $G * H$. In $G \star H$, every vertex in the $i^{t h}$ copy of $H$ is joined to every vertex in the $j^{\text {th }}$ copy of $H$, whenever $v_{i}$ and $v_{j}$ are connected.


## Extended neighborhood corona.

$G * H$ can model complex networks with small average path length ( $\ell$ ) even if $G$ and/or $H$ grow asymptotically.

## Proposition (F. et al., 2022)

If $m=|V(G)|$ and $n=|V(H)|$, then
(1) $\lim _{m \rightarrow \infty} \ell_{G * H}=\frac{n+1}{n} \cdot \lim _{m \rightarrow \infty} \ell_{G}$.
(2) $\frac{\ell_{G} \cdot(m-1)+1}{m} \leq \lim _{n \rightarrow \infty} \ell_{G * H} \leq \frac{\ell_{G} \cdot(m-1)+2}{m}$.
(3) $\lim _{m, n \rightarrow \infty} \ell_{G * H}=\lim _{m \rightarrow \infty} \ell_{G}$.

If $\ell_{G} \rightarrow \infty$, then only $H$ can grow.
Example: $G=P_{m}$ (center path).
If $\ell_{G}$ is asymptotically bounded, then both $G$ and $H$ can grow.
Example: $G=S_{m}$ (center star).

## CONTENTS

© Preliminaries.
(0) Minimizing the number of shadows.

- Further work.


## Solving the dynamic coloring problem.

$\omega(G)$ [Clique number]: Largest order of any complete subgraph in $G$.

## Lemma (F. et al., 2022)

$$
\omega(G) \cdot \chi(H) \leq \chi_{t}(G * H) \leq \beta_{t} \cdot \chi_{\alpha_{t}}(G)
$$

where

$$
\alpha_{t}:=\min \left\{\left\lceil\frac{t}{n+1}\right\rceil, \Delta(G)\right\}
$$

and

$$
\beta_{t}:=\min \{n+1, \max \{t, \chi(H)\}\} .
$$

Proposition (F. et al., 2022)
If $\omega(G)=\chi(G)$, then

$$
\chi_{t}(G * H)=\chi(G) \cdot \chi(H)
$$

for every $t \leq \chi(H)$.

## Center path: $P_{m} * H$.



## Theorem (F. et al., 2022)

$$
\chi_{t}\left(P_{m} * H\right)= \begin{cases}2 \cdot \max \{t, \chi(H)\}, & \text { if } t \leq n+1 \\ n+t+1, & \text { if } n+1<t<2 n+2 \\ 3 n+3, & \text { otherwise }\end{cases}
$$

## Center path: $P_{m} * H$.



$$
\chi_{2}\left(P_{4} * P_{3}\right)=4
$$

## Theorem (F. et al., 2022)

$$
\chi_{t}\left(P_{m} * H\right)= \begin{cases}2 \cdot \max \{t, \chi(H)\}, & \text { if } t \leq n+1, \\ n+t+1, & \text { if } n+1<t<2 n+2, \\ 3 n+3, & \text { otherwise }\end{cases}
$$

## Center path: $P_{m} * H$.



$$
\chi_{4}\left(P_{4} * P_{3}\right)=8 .
$$

## Theorem (F. et al., 2022)

$$
\chi_{t}\left(P_{m} * H\right)= \begin{cases}2 \cdot \max \{t, \chi(H)\}, & \text { if } t \leq n+1, \\ n+t+1, & \text { if } n+1<t<2 n+2, \\ 3 n+3, & \text { otherwise }\end{cases}
$$

## Center path: $P_{m} * H$.



$$
\chi_{6}\left(P_{4} * P_{3}\right)=10 .
$$

## Theorem (F. et al., 2022)

$$
\chi_{t}\left(P_{m} * H\right)= \begin{cases}2 \cdot \max \{t, \chi(H)\}, & \text { if } t \leq n+1 \\ n+t+1, & \text { if } n+1<t<2 n+2, \\ 3 n+3, & \text { otherwise }\end{cases}
$$

## Center path: $P_{m} * H$.



## Theorem (F. et al., 2022)

$$
\chi_{t}\left(P_{m} * H\right)= \begin{cases}2 \cdot \max \{t, \chi(H)\}, & \text { if } t \leq n+1 \\ n+t+1, & \text { if } n+1<t<2 n+2, \\ 3 n+3, & \text { otherwise } .\end{cases}
$$

## Center path: $P_{m} * H$.

## Theorem (F. et al., 2022)

$$
\chi_{t}\left(P_{m} * H\right)= \begin{cases}2 \cdot \max \{t, \chi(H)\}, & \text { if } t \leq n+1 \\ n+t+1, & \text { if } n+1<t<2 n+2 \\ 3 n+3, & \text { otherwise }\end{cases}
$$

- Two rounds of communication are enough to ensure that all the participants can reconstruct the secret, whenever everybody is honest.
- Minimum number of distinct shadows:

$$
\lim _{n \rightarrow \infty} \chi_{t}\left(P_{m} * H\right)=2 \cdot \max \{t, \chi(H)\}
$$

## Center star: $S_{m} * H$.



Theorem (F. et al., 2022)

$$
\chi_{t}\left(S_{m} * H\right)= \begin{cases}2 \cdot \max \{t, \chi(H)\}, & \text { if } t \leq n+1 \\ n+t+1, & \text { if } n+1<t<m n+m \\ (m+1) \cdot(n+1), & \text { otherwise }\end{cases}
$$

## Center star: $S_{m} * H$.



$$
\chi_{2}\left(S_{3} * P_{3}\right)=4
$$

## Theorem (F. et al., 2022)

$$
\chi_{t}\left(S_{m} * H\right)= \begin{cases}2 \cdot \max \{t, \chi(H)\}, & \text { if } t \leq n+1 \\ n+t+1, & \text { if } n+1<t<m n+m \\ (m+1) \cdot(n+1), & \text { otherwise }\end{cases}
$$

## Center star: $S_{m} * H$.



$$
\chi_{4}\left(S_{3} * P_{3}\right)=8 .
$$

## Theorem (F. et al., 2022)

$$
\chi_{t}\left(S_{m} * H\right)= \begin{cases}2 \cdot \max \{t, \chi(H)\}, & \text { if } t \leq n+1 \\ n+t+1, & \text { if } n+1<t<m n+m \\ (m+1) \cdot(n+1), & \text { otherwise }\end{cases}
$$

## Center star: $S_{m} * H$.



$$
\chi_{7}\left(S_{3} * P_{3}\right)=11
$$

## Theorem (F. et al., 2022)

$$
\chi_{t}\left(S_{m} * H\right)= \begin{cases}2 \cdot \max \{t, \chi(H)\}, & \text { if } t \leq n+1 \\ n+t+1, & \text { if } n+1<t<m n+m \\ (m+1) \cdot(n+1), & \text { otherwise }\end{cases}
$$

## Center star: $S_{m} * H$.



## Theorem (F. et al., 2022)

$$
\chi_{t}\left(S_{m} * H\right)= \begin{cases}2 \cdot \max \{t, \chi(H)\}, & \text { if } t \leq n+1 \\ n+t+1, & \text { if } n+1<t<m n+m \\ (m+1) \cdot(n+1), & \text { otherwise }\end{cases}
$$

## Center star: $S_{m} * H$.

## Theorem (F. et al., 2022)

$$
\chi_{t}\left(S_{m} * H\right)= \begin{cases}2 \cdot \max \{t, \chi(H)\}, & \text { if } t \leq n+1 \\ n+t+1, & \text { if } n+1<t<m n+m \\ (m+1) \cdot(n+1), & \text { otherwise }\end{cases}
$$

- Two rounds of communication are enough to ensure that all the participants can reconstruct the secret, whenever everybody is honest.
- Minimum number of distinct shadows:
- If $S_{m}$ is large enough, then

$$
\lim _{m \rightarrow \infty} \chi_{t}\left(S_{m} * H\right)= \begin{cases}2 \cdot \max \{t, \chi(H)\}, & \text { if } t \leq n+1 \\ n+t+1, & \text { otherwise }\end{cases}
$$

- If either $H$ or both $S_{m}$ and $H$ are large enough, then

$$
\lim _{n \rightarrow \infty} \chi_{t}\left(S_{m} * H\right)=\lim _{m, n \rightarrow \infty} \chi_{t}\left(S_{m} * H\right)=2 \cdot \max \{t, \chi(H)\}
$$

## CONTENTS

© Preliminaries.
(2) Minimizing the number of shadows.

- Further work.
- Problem A. For any given graph, how many rounds of communications are, at least, necessary to ensure that the secret can be reconstructed by everybody? What if there are dishonest participants?
- Problem B. Which is the minimum number of distinct shadows into which the secret has to split to ensure that everybody recover it in, at most, $k$ rounds of communication?

$$
\left|c\left(N_{G}^{k}(v)\right)\right| \geq \min \left\{t,\left|N_{G}^{k}(v)\right|\right\}
$$

where

$$
\begin{gathered}
N_{G}^{k}(v):=\left\{w \in V(G): d_{G}(v, w) \leq k\right\} \\
{\left[(t, k) \text {-dynamic chromatic number } \chi_{t, k}(G)\right]}
\end{gathered}
$$

## REFERENCES

- [Adiga et al., 2016] Spectra of extended neighborhood corona and extended corona of two graphs. Electron. J. Graph Theory Appl. 4, 101-110.
- [Blakley, 1979] Safeguarding cryptographic keys. Int. Workshop Managing Requirements Knowledge, 313-317.
- [F. et al., 2022] Optimal shadow allocations of secret sharing schemes arisen from the dynamic coloring of extended neighborhood coronas. Mathematics 10, paper 2018, 13 pp.
- [Frucht and Harary, 1970] On the corona of two graphs. Aequationes Math. 4, 322-325.
- [Indulal, 2011] The spectrum of neighborhood corona of graphs. Kragujevac J. Math. 35, 493-500.
- [Kim and Ok, 2017] Dynamic choosability of triangle-free graphs and sparse random graphs. J. Graph Theory 87, 347-355.
- [Montgomery, 2001] Dynamic coloring of graphs. Ph.D Thesis, West Virginia University, ProQuest LLC, Ann Arbor, MI, United States, 2001.
- [Shamir, 1979] How to share a secret. Comm. ACM 22, 612-613.


## Many thanks!

## Minimizing the total number of shadows in secret sharing schemes based on extended neighborhood <br> coronas

Raúl M. Falcón ${ }^{(1)}$, N. Mohanapriya ${ }^{(2)}$ and V. Aparna ${ }^{(2)}$
${ }^{(1)}$ Department of Applied Maths I, Universidad de Sevilla, Spain. rafalgan@us.es
(2) PG and Research Dept. of Mathematics, Kongunadu Arts and Science College, India.

Santander, October 19-21, 2022.


