
Preliminaries
Our contribution

Generalized partially bent functions and cocyclic
Butson matrices

J.A. Armario⋆, R. Egan†, D. L. Flannery‡
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Boolean functions f : Zm
2 → Z2 in Cryptography
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Cryptographic Boolean functions

Some Cryptographic criteria for Boolean functions in order to
design “secure” cryptosystems

1 Balanced

2 Higher-order nonlinearity: Bent functions.

3 Correlation immunity

4 etc.

Some of these criteria are antagonistic ! Tradeoffs between all
these criteria must be found.
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Cryptographic Boolean functions

Main problems to study:

Interests are in four aspects:
1 Characterization
2 Constructions
3 Classifications
4 Enumerations

Extensions of this theory to:
1 Vectorial Boolean functions
2 Generalized functions
3 etc.
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Our motivation.
B. Schmidt. A survey of group invariant Butson matrices..., Radon Ser. Comput. Appl. Math. 23 (2019), 241–251.

Theorem 1

Let f : Zm
q → Zh be a map. The following are equivalent:

(1) f is a Generalized Bent Function (GBF);

(2)
[
ζ
f (x−y)
h

]
x ,y∈Zm

q
∈ BH(qm, h) is equivalent to a coboundary

matrix M∂f ;

(3) f is a perfect h-ary (q, . . . , q)-array.

Additionally, if h is prime and divides qm, then (1)–(3) are
equivalent to

(4) {(f (x), x) | x ∈ Zm
q } is a splitting (qm, h, qm, qm/h)-relative

difference set in Zh × Zm
q .
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Definitions

Let q,m, h be positive integers, and let ζk be the complex kth root
of unity exp (2π

√
−1/k). Schmidt defines a map

f : Zm
q → Zh

to be a generalized bent function (GBF) if∣∣∣ ∑
x∈Zm

q

ζ
f (x)
h ζ−vx⊤

q

∣∣∣2 = qm for all v ∈ Zm
q ,

where |z | as usual denotes the modulus of z ∈ C.
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Example of GBF

f : Z2
2 → Z2

(x1, x2) 7→ x1 · x2

v (0, 0) (0, 1) (1, 0) (1, 1)∑
x∈Z2

2

(−1)f (x)+vx⊤ 2 2 2 −2

Bent functions are of interest in cryptography, coding theory,...
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Example of GBF (nonlinearity of Boolean functions)

f : Z2
2 → Z2

(x1, x2) 7→ x1 · x2

(x1, x2) (0, 0) (0, 1) (1, 0) (1, 1)

f (x1, x2) 0 0 0 1
x2 0 1 0 1

x1 + x2 0 1 0 0

The Hamming distance of f to the 8 affine Boolean functions is
either 1, 2 or 3. Therefore the nonlinearity of f is 1.
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Example of GBF (Cryptography)

Boolean functions with large nonlinearity are difficult to
approximate by linear functions and so provide resistance against
linear cryptanalysis.

Result

The largest nonlinearity of a Boolean function on Z2 is
2n−1 − 2n/2−1 for n even. The functions attaining this bound, are
called bent functions.
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Definitions

Let H be a square matrix of order n with entries in ⟨ζk⟩ =
{ζ lk : l = 0, . . . , k − 1}. We say that H is a Butson Hadamard
matrix if

HH∗ = nIn

where In is the n × n identity matrix and H∗ is the complex
conjugate transpose of H. We denote by H ∈ BH(n, k).

H =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 , HH∗ =


4 0 0 0
0 4 0 0
0 0 4 0
0 0 0 4
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Definitions: Cocyclic Butson matrix

H =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 ,
indexing the rows and columns of H with the element of
Z2
2 = {(0, 0), (0, 1), (1, 0), (1, 1)}. We have

ψ(x , y) = Hx ,y , x , y ∈ Z2
2

satisfies that

ψ(x , y)ψ(xy , z) = ψ(x , yz)ψ(y , z), ∀x , y , z ∈ Z2
2

ψ is a cocycle and H is a cocyclic Butson matrix.

The “simplest” cocycles are the coboundaries.
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Example of GBF: Butson Hadamard matrix

f : Z2
2 → Z2

(x1, x2) 7→ x1 · x2

M = [ζ
f (x−y)
2 ]x ,y∈Z2

2
=


1 1 1 −1
1 1 −1 1
1 −1 1 1

−1 1 1 1


Observe

H = PMQT , with P = Q =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1
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Definitions

Let E be a group with a normal subgroup N of order m and index
v . A (v ,m, k , λ)-relative difference set in E relative to N (the
forbidden subgroup) is a k-subset R of a transversal for N in E
such that

|R ∩ xR| = λ ∀x ∈ E \ N.

That is, x can be written as r1r
−1
2 for λ different pairs

(r1, r2) ∈ R2.

We call R abelian if E is abelian, and splitting if N is a direct
factor of E .
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Example of GBF: relative difference set

f : Z2
2 → Z2

(x1, x2) 7→ x1 · x2

R = {(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1)} ⊂ Z2 × Z2
2

E = Z3
2 and N = {(0, 0, 0), (1, 0, 0)}

x \ y−1 (0, 0, 0) (0, 0, 1) (0, 1, 0) (1, 1, 1)

(0, 0, 0) (0, 0, 1) (0, 1, 0) (1, 1, 1)
(0, 0, 1) (0, 0, 1) (0, 1, 1) (1, 1, 0)
(0, 1, 0) (0, 1, 0) (0, 1, 1) (1, 0, 1)
(1, 1, 1) (1, 1, 1) (1, 1, 0) (1, 0, 1)

R is a (4, 2, 4, 2)-RDS in Z2 × Z2
2.
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Definitions

Let s = (s1, . . . , sm) be an m-tuple of integers si > 1, and let
G = Zs1 × · · · × Zsm . A h-ary s-array is merely a set map

ϕ : G → Zh.

When h = 2, the array is binary.

For w ∈ G , we define the periodic autocorrelation at shift w of an
array ϕ, denoted ACϕ(w), by

ACϕ(w) =
∑
g∈G

ζ
ϕ(g)−ϕ(g+w)
h .

If ACϕ(w) = 0 for all w ̸= 0, then ϕ is called perfect.
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Example of GBF: perfect array

f : Z2
2 → Z2

(x1, x2) 7→ x1 · x2
can be written as

Mf = [f (x , y)]x ,y∈Z2 =
0 0
0 1

.

Then:

w (0, 0) (0, 1) (1, 0) (1, 1)

AC (w) 4 0 0 0
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Example of GBF: perfect array (Cryptography)

The absolute indicator of f : Zn
2 → Z2 is

δ(f ) =
1

2n/2
max
w ̸=0

|ACf (w)|

This measures the resistance of a Boolean function against
differential cryptanalysis.
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Our contribution: Cocycles in stead of coboundaries

Theorem 1

Let f : Zm
q → Zh be a map. The following are equivalent:

(1) f is a Generalized Bent Function (GBF);

(2)
[
ζ
f (x−y)
h

]
x ,y∈Zm

q
∈ BH(qm, h) is equivalent to a coboundary

matrix M∂f ;

(3) f is a perfect h-ary (q, . . . , q)-array.

Additionally, if h is prime and divides qm, then (1)–(3) are
equivalent to

(4) {(f (x), x) | x ∈ Zm
q } is a splitting (qm, h, qm, qm/h)-relative

difference set in Zh × Zm
q .
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Our contribution: Cocycles in stead of coboundaries

Theorem 2

Let h be a prime divisor of q, and let ϕ : Zm
q → Zh be an array

with expansion ϕ′ of type z ̸= 0.

(a) The following are equivalent:

(i) µz∂ϕ is orthogonal, i.e., Mµz∂ϕ ∈ BH(qm, h);
(ii) ϕ is a GPhA(qm) of type z;
(iii) {g + K ∈ E/K | ϕ′(g) = 0} is a non-splitting

(qm, h, qm, qm/h)-relative difference set in E/K with forbidden
subgroup H/K .
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Our contribution in the general case (h-ary arrays)

Theorem 2 (continued)

(b) If z = 1 then (i)–(iii) are equivalent to

(iv) ϕ′ is a generalized plateaued function, i.e.,∣∣∣ ∑
x∈Zm

hq

ζ
ϕ′(x)
h ζ−v ·x

hq

∣∣∣2 = {
(h2q)m v ∈ F

0 otherwise,

where F = {v ∈ Zm
hq | v ≡ 1 mod h}.

(c) Let h = q and z = 1. Suppose that, for all y ∈ Zm
h \ {0} with∑

yi ≡ 0 mod h, there exists x ∈ Zm
h satisfying (*). Then

(i)–(iv) are equivalent to

(v) ϕ′ is a GPBF.
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Our contribution in the general case (h-ary arrays)

Remark

If h = q in Theorem 2, then |L| · |F| = (hq)m. This identity is the
condition under which in the literature a map f : Zm

q → Zq is
called a generalized partially bent function.

Definition

A generalized partially bent function (GPBF) is a map
f : Zm

q → Zh such that |ACf (x)| ∈ {0, qm} for all x ∈ Zm
q .
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Example 1

The map ϕ =

[
0 0 0
0 1 0
2 2 1

]
on Z2

3 is a GP3A(3, 3) of type

z = (1, 1).
Its expansion ϕ′ : Z2

9 → Z3 is defined by

0 0 0 1 1 1 2 2 2
0 1 0 1 2 1 2 0 2
2 2 1 0 0 2 1 1 0
1 1 1 2 2 2 0 0 0
1 2 1 2 0 2 0 1 0
0 0 2 1 1 0 2 2 1
2 2 2 0 0 0 1 1 1
2 0 2 0 1 0 1 2 1
1 1 0 2 2 1 0 0 2


.
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We have

ACϕ′(v1, v2) =

{
81 ζ

−(v1+v2)/3
3 v ∈ L
0 v /∈ L,

where

L = {(0, 0), (0, 3), (0, 6), (3, 0), (3, 3), (3, 6), (6, 0), (6, 3), (6, 6)}.

Therefore, ϕ′ is a generalized partially bent function.
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The cocyclic BH(9, 3), Mfz∂ϕ, (represented in logarithmic form) is:



0 0 0 0 0 0 0 0 0
0 0 1 1 2 1 0 2 2
0 1 1 0 0 2 2 1 2
0 1 0 2 1 1 2 2 0
0 2 0 1 2 2 1 1 0
0 1 2 1 2 0 2 0 1
0 0 2 2 1 2 0 1 1
0 2 1 2 1 0 1 0 2
0 2 2 0 0 1 1 2 1


.
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R = {(0, 0) + K , (0, 1) + K , (0, 2) + K , (1, 0) + K , (1, 2) + K ,

(1, 7) + K , (2, 3) + K , (2, 4) + K , (2, 8) + K}

is a (9, 3, 9, 3)-RDS in E/K with forbidden subgroup L/K for
K = {(0, 0), (3, 6), (6, 3)}.

Finally,

F = {(1, 1), (1, 4), (1, 7), (4, 1), (4, 4), (4, 7), (7, 1), (7, 4), (7, 7)}

and ∣∣∣ ∑
x∈Z2

9

ζ
ϕ′(x)
3 ζ−vx⊤

9

∣∣∣2 = {
729 v ∈ F
0 v /∈ F .
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Example 2

Let ϕ be the map on Z3
2 with layers

A0 =

[
0 1
1 1

]
and A1 =

[
0 1
0 0

]
.

Here Ai is the layer on {i} × Z2 × Z2, and ϕ(i , j , k) = Ai (j , k).
Then ϕ is a GPBA(2, 2, 2) of type 1. In particular, the expansion
of ϕ is a GPBF; whereas no GBF f : Z3

2 → Z2 exists.

Result (By a iterative procedure)

For all k ≥ 3 there exists a map from Zk
2 to Z2 whose expansion is

a GPBF; whereas for odd k , no Bent function exists.
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Thank you!!!
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