Generalized partially bent functions and cocyclic Butson matrices

J.A. Armario^{*}, R. Egan[†], D. L. Flannery[‡]

*Depart. Matemática Aplicada I, Universidad de Sevilla, Spain †School of Mathematical Sciences, Dublin City University, Ireland ‡School of Mathematics, Statistics and Applied Mathematics, NUI Galway, Ireland

19 - 21 October, 2022

17th RECSI, Santander, Spain

・ 同 ト ・ ヨ ト ・ ヨ

J.A. Armario*, R. Egan[†], D. L. Flannery[‡] Generalized partially bent functions and associated objects

Preliminaries Our contributior

J.A. Armario*, R. Egan[†], D. L. Flannery[‡] Generalized partially bent functions and associated objects

Image: A image: A

J.A. Armario*, R. Egan[†], D. L. Flannery[‡] Generalized partially bent functions and associated objects

< 同 > < ヨ > < ヨ

Preliminaries Our contribution

Boolean functions $f: \mathbb{Z}_2^m \to \mathbb{Z}_2$ in Cryptography

Symmetric Criptography

J.A. Armario⁺, R. Egan[†], D. L. Flannery[‡] Generalized partially bent functions and associated objects

・ 同 ト ・ ヨ ト ・ ヨ ト

Cryptographic Boolean functions

Some Cryptographic criteria for Boolean functions in order to design "secure" cryptosystems

- Balanced
- e Higher-order nonlinearity: Bent functions.
- Orrelation immunity
- etc.

Some of these criteria are antagonistic ! Tradeoffs between all these criteria must be found.

• • = • • = •

Cryptographic Boolean functions

Main problems to study:

- Interests are in four aspects:
 - Characterization
 - 2 Constructions
 - Olassifications
 - Inumerations
- Extensions of this theory to:
 - Vectorial Boolean functions
 - ② Generalized functions
 - etc.

Our motivation.

B. Schmidt. A survey of group invariant Butson matrices..., Radon Ser. Comput. Appl. Math. 23 (2019), 241-251.

Theorem 1

- Let $f: \mathbb{Z}_q^m \to \mathbb{Z}_h$ be a map. The following are equivalent:
- (1) f is a Generalized Bent Function (GBF);
- (2) $[\zeta_h^{f(x-y)}]_{x,y\in\mathbb{Z}_q^m} \in BH(q^m, h)$ is equivalent to a coboundary matrix $M_{\partial f}$;
- (3) f is a perfect h-ary (q, \ldots, q) -array.

Additionally, if h is prime and divides $q^m\!\!\!\!/$, then $(1)\!-\!(3)$ are equivalent to

(4) $\{(f(x), x) \mid x \in \mathbb{Z}_q^m\}$ is a splitting $(q^m, h, q^m, q^m/h)$ -relative difference set in $\mathbb{Z}_h \times \mathbb{Z}_q^m$.

Let q, m, h be positive integers, and let ζ_k be the complex k^{th} root of unity exp $(2\pi\sqrt{-1}/k)$. Schmidt defines a map

$$f:\mathbb{Z}_q^m\to\mathbb{Z}_h$$

to be a generalized bent function (GBF) if

$$\Big|\sum_{\mathsf{x}\in\mathbb{Z}_q^m}\zeta_h^{f(\mathsf{x})}\zeta_q^{-\mathsf{v}\mathsf{x}^ op}\Big|^2=q^m ext{ for all } \mathsf{v}\in\mathbb{Z}_q^m,$$

where |z| as usual denotes the modulus of $z \in \mathbb{C}$.

伺 ト イヨ ト イヨト

Example of GBF

$$\begin{array}{rcccc} f: & \mathbb{Z}_2^2 & \to & \mathbb{Z}_2 \\ & & (x_1, x_2) & \mapsto & x_1 \cdot x_2 \end{array}$$

V	(0,0)	(0,1)	(1,0)	(1, 1)
$\sum_{x\in\mathbb{Z}_2^2}(-1)^{f(x)+vx^\top}$	2	2	2	-2

Bent functions are of interest in cryptography, coding theory,...

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Example of GBF (nonlinearity of Boolean functions)

$$f: \mathbb{Z}_2^2 \to \mathbb{Z}_2$$

 $(x_1, x_2) \mapsto x_1 \cdot x_2$

(x_1, x_2)	(0,0)	(0,1)	(1,0)	(1, 1)
$f(x_1, x_2)$	0	0	0	1
<i>x</i> ₂	0	1	0	1
$x_1 + x_2$	0	1	0	0

The Hamming distance of f to the 8 affine Boolean functions is either 1, 2 or 3. Therefore the nonlinearity of f is 1.

くロ と く 同 と く ヨ と 一

Example of GBF (Cryptography)

Boolean functions with large nonlinearity are difficult to approximate by linear functions and so provide resistance against linear cryptanalysis.

Result

The largest nonlinearity of a Boolean function on \mathbb{Z}_2 is $2^{n-1} - 2^{n/2-1}$ for *n* even. The functions attaining this bound, are called bent functions.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Definitions

Let *H* be a square matrix of order *n* with entries in $\langle \zeta_k \rangle = \{\zeta_k^I : I = 0, \dots, k - 1\}$. We say that *H* is a Butson Hadamard matrix if

$$HH^* = nI_n$$

where I_n is the $n \times n$ identity matrix and H^* is the complex conjugate transpose of H. We denote by $H \in BH(n, k)$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definitions: Cocyclic Butson matrix

indexing the rows and columns of H with the element of $\mathbf{Z}_2^2=\{(0,0),(0,1),(1,0),(1,1)\}.$ We have

$$\psi(x,y) = H_{x,y}, \quad x,y \in \mathbf{Z}_2^2$$

satisfies that

$$\psi(x,y)\psi(xy,z) = \psi(x,yz)\psi(y,z), \ \forall x,y,z \in \mathbf{Z}_2^2$$

- ψ is a cocycle and H is a cocyclic Butson matrix.
- The "simplest" cocycles are the coboundaries.

J.A. Armario^{*}, R. Egan[†], D. L. Flannery[‡]

Generalized partially bent functions and associated objects

Preliminaries Our contribution

Example of GBF: Butson Hadamard matrix

$$M = [\zeta_2^{f(x-y)}]_{x,y \in \mathbb{Z}_2^2} = \begin{bmatrix} 1 & 1 & 1 & -1 \\ 1 & 1 & -1 & 1 \\ 1 & -1 & 1 & 1 \\ -1 & 1 & 1 & 1 \end{bmatrix}$$

Observe

$$H = PMQ^{T}, \text{ with } P = Q = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

Generalized partially bent functions and associated objects

Let *E* be a group with a normal subgroup *N* of order *m* and index *v*. A (v, m, k, λ) -relative difference set in *E* relative to *N* (the forbidden subgroup) is a *k*-subset *R* of a transversal for *N* in *E* such that

$$|R \cap xR| = \lambda \quad \forall x \in E \setminus N.$$

That is, x can be written as $r_1r_2^{-1}$ for λ different pairs $(r_1, r_2) \in \mathbb{R}^2$.

We call R abelian if E is abelian, and *splitting* if N is a direct factor of E.

周 ト イ ヨ ト イ ヨ ト

Example of GBF: relative difference set

$$\begin{array}{rccc} f: & \mathbb{Z}_2^2 & \to & \mathbb{Z}_2 \\ & (x_1, x_2) & \mapsto & x_1 \cdot x_2 \end{array}$$

 $R = \{(0, 0, 0), (0, 0, 1), (0, 1, 0), (1, 1, 1)\} \subset \mathbb{Z}_2 \times \mathbb{Z}_2^2$

 $E = \mathbb{Z}_2^3$ and $N = \{(0, 0, 0), (1, 0, 0)\}$

-	$x \setminus y^{-1}$	(0,0,0)	(0, 0, 1)	(0,1,0)	(1, 1, 1)
-	(0, 0, 0)		(0, 0, 1)	(0, 1, 0)	(1, 1, 1)
	(0, 0, 1)	(0, 0, 1)		(0, 1, 1)	(1, 1, 0)
	(0, 1, 0)	(0, 1, 0)	(0, 1, 1)		(1, 0, 1)
	(1, 1, 1)	(1, 1, 1)	(1, 1, 0)	(1, 0, 1)	

R is a (4, 2, 4, 2)-RDS in $\mathbb{Z}_2 \times \mathbb{Z}_2^2$.

くロ とくぼ とくほ とく 日 とうしょう

Definitions

Let $\mathbf{s} = (s_1, \dots, s_m)$ be an *m*-tuple of integers $s_i > 1$, and let $G = \mathbb{Z}_{s_1} \times \cdots \times \mathbb{Z}_{s_m}$. A *h*-ary **s**-array is merely a set map

$$\phi \colon G \to \mathbb{Z}_h.$$

When h = 2, the array is *binary*.

For $w \in G$, we define the periodic autocorrelation at shift w of an array ϕ , denoted $AC_{\phi}(w)$, by

$$\mathcal{AC}_{\phi}(w) = \sum_{g \in \mathcal{G}} \zeta_h^{\phi(g) - \phi(g+w)}.$$

If $AC_{\phi}(w) = 0$ for all $w \neq 0$, then ϕ is called perfect.

- 周 ト - ヨ ト - ヨ ト - -

Example of GBF: perfect array

$$f: \mathbb{Z}_2^2 \to \mathbb{Z}_2$$

 $(x_1, x_2) \mapsto x_1 \cdot x_2$

can be written as

$$M_f = [f(x,y)]_{x,y \in \mathbb{Z}_2} = egin{array}{cc} 0 & 0 \ 0 & 1 \end{array}.$$

Then:

W	(0,0)	(0,1)	(1,0)	(1, 1)
AC(w)	4	0	0	0

▶ ∢ ≣ ▶

Example of GBF: perfect array (Cryptography)

The absolute indicator of $f: \mathbb{Z}_2^n \to \mathbb{Z}_2$ is

$$\delta(f) = \frac{1}{2^{n/2}} \max_{w \neq 0} |AC_f(w)|$$

This measures the resistance of a Boolean function against differential cryptanalysis.

.

J.A. Armario*, R. Egan[†], D. L. Flannery[‡] Generalized partially bent functions and associated objects

< 同 > < 三 > < 三

Our contribution: Cocycles in stead of coboundaries

Theorem 1

- Let $f: \mathbb{Z}_q^m \to \mathbb{Z}_h$ be a map. The following are equivalent:
- (1) f is a Generalized Bent Function (GBF);
- (2) $[\zeta_h^{f(x-y)}]_{x,y\in\mathbb{Z}_q^m} \in BH(q^m, h)$ is equivalent to a coboundary matrix $M_{\partial f}$;
- (3) f is a perfect h-ary (q, \ldots, q) -array.

Additionally, if h is prime and divides $q^m,$ then (1)–(3) are equivalent to

(4)
$$\{(f(x), x) \mid x \in \mathbb{Z}_q^m\}$$
 is a splitting $(q^m, h, q^m, q^m/h)$ -relative difference set in $\mathbb{Z}_h \times \mathbb{Z}_q^m$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Our contribution: Cocycles in stead of coboundaries

Theorem 2

Let *h* be a prime divisor of *q*, and let $\phi : \mathbb{Z}_q^m \to \mathbb{Z}_h$ be an array with expansion ϕ' of type $\mathbf{z} \neq \mathbf{0}$. (a) The following are equivalent: (i) $\mu_{\mathbf{z}}\partial\phi$ is orthogonal, i.e., $M_{\mu_{\mathbf{z}}\partial\phi} \in BH(q^m, h)$; (ii) ϕ is a $GPhA(q^m)$ of type \mathbf{z} ; (iii) $\{g + K \in E/K \mid \phi'(g) = 0\}$ is a non-splitting $(q^m, h, q^m, q^m/h)$ -relative difference set in E/K with forbidden subgroup H/K.

< 同 ト < 三 ト < 三 ト

Our contribution in the general case (*h*-ary arrays)

Theorem 2 (continued)

(b) If z = 1 then (i)–(iii) are equivalent to (iv) ϕ' is a generalized plateaued function, i.e.,

$$\Big|\sum_{x\in\mathbb{Z}_{hq}^m}\zeta_h^{\phi'(x)}\zeta_{hq}^{-\nu\cdot x}\Big|^2 = \begin{cases} (h^2q)^m & \nu\in\mathcal{F}\\ 0 & \text{otherwise.} \end{cases}$$

where $\mathcal{F} = \{ v \in \mathbb{Z}_{hq}^m \mid v \equiv 1 \mod h \}.$

(c) Let h = q and $\mathbf{z} = \mathbf{1}$. Suppose that, for all $y \in \mathbb{Z}_h^m \setminus \{\mathbf{0}\}$ with $\sum_{i=1}^{m} y_i \equiv 0 \mod h$, there exists $x \in \mathbb{Z}_h^m$ satisfying (*). Then (i)-(iv) are equivalent to (v) ϕ' is a GPBF.

・ 同 ト ・ ヨ ト ・ ヨ ト

Our contribution in the general case (*h*-ary arrays)

Remark

If h = q in Theorem 2, then $|L| \cdot |\mathcal{F}| = (hq)^m$. This identity is the condition under which in the literature a map $f : \mathbb{Z}_q^m \to \mathbb{Z}_q$ is called a generalized partially bent function.

Definition

A generalized partially bent function (GPBF) is a map $f : \mathbb{Z}_q^m \to \mathbb{Z}_h$ such that $|AC_f(x)| \in \{0, q^m\}$ for all $x \in \mathbb{Z}_q^m$.

J.A. Armario*, R. Egan[†], D. L. Flannery[‡] Generalized partially bent functions and associated objects

・ 同 ト ・ ヨ ト ・ ヨ ト

Example 1

The map
$$\phi = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 2 & 1 \end{bmatrix}$$
 on \mathbb{Z}_3^2 is a GP3A(3,3) of type $\mathbf{z} = (1,1)$.
Its expansion $\phi' \colon \mathbb{Z}_9^2 \to \mathbb{Z}_3$ is defined by

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 1 & 2 & 1 & 2 & 0 & 2 \\ 2 & 2 & 1 & 0 & 0 & 2 & 1 & 1 & 0 \\ 1 & 1 & 1 & 2 & 2 & 2 & 0 & 0 & 0 \\ 1 & 2 & 1 & 2 & 0 & 2 & 0 & 1 & 0 \\ 0 & 0 & 2 & 1 & 1 & 0 & 2 & 2 & 1 \\ 2 & 2 & 2 & 0 & 0 & 0 & 1 & 1 & 1 \\ 2 & 0 & 2 & 0 & 1 & 0 & 1 & 2 & 1 \\ 1 & 1 & 0 & 2 & 2 & 1 & 0 & 0 & 2 \end{bmatrix}$$

< ロ > < 回 > < 回 > < 回 > < 回 > Generalized partially bent functions and associated objects

э

•

We have

$$AC_{\phi'}(v_1, v_2) = \begin{cases} 81 \zeta_3^{-(v_1+v_2)/3} & v \in L \\ 0 & v \notin L, \end{cases}$$

where

$$L = \{(0,0), (0,3), (0,6), (3,0), (3,3), (3,6), (6,0), (6,3), (6,6)\}.$$

Therefore, ϕ^\prime is a generalized partially bent function.

伺 ト イ ヨ ト イ ヨ

The cocyclic BH(9,3), $M_{f_z\partial\phi}$, (represented in logarithmic form) is:

Γ0	0	0	0	0	0	0	0	07	
0	0	1	1	2	1	0	2	2	
0	1	1	0	0	2	2	1	2	
0	1	0	2	1	1	2	2	0	
0	2	0	1	2	2	1	1	0	,
0	1	2	1	2	0	2	0	1	
0	0	2	2	1	2	0	1	1	
0	2	1	2	1	0	1	0	2	
Lo	2	2	0	0	1	1	2	1	

I = ►

$$R = \{(0,0) + K, (0,1) + K, (0,2) + K, (1,0) + K, (1,2) + K, (1,7) + K, (2,3) + K, (2,4) + K, (2,8) + K\}$$

is a (9,3,9,3)-RDS in E/K with forbidden subgroup L/K for $K = \{(0,0), (3,6), (6,3)\}.$

Finally,

$$\mathcal{F} = \{(1,1), (1,4), (1,7), (4,1), (4,4), (4,7), (7,1), (7,4), (7,7)\}$$

and

$$\Big|\sum_{x\in\mathbb{Z}_9^2}\zeta_3^{\phi'(x)}\zeta_9^{-vx^{\top}}\Big|^2 = \begin{cases} 729 & v\in\mathcal{F}\\ 0 & v\notin\mathcal{F}. \end{cases}$$

J.A. Armario^{*}, R. Egan[†], D. L. Flannery[‡] Generalized part

Generalized partially bent functions and associated objects

< 同 ト < 三 ト < 三 ト

Example 2

Let ϕ be the map on \mathbb{Z}_2^3 with layers

$$\mathcal{A}_0 = egin{bmatrix} 0 & 1 \ 1 & 1 \end{bmatrix}$$
 and $\mathcal{A}_1 = egin{bmatrix} 0 & 1 \ 0 & 0 \end{bmatrix}$.

Here A_i is the layer on $\{i\} \times \mathbb{Z}_2 \times \mathbb{Z}_2$, and $\phi(i, j, k) = A_i(j, k)$. Then ϕ is a GPBA(2, 2, 2) of type **1**. In particular, the expansion of ϕ is a GPBF; whereas no GBF $f : \mathbb{Z}_2^3 \to \mathbb{Z}_2$ exists.

Result (By a iterative procedure)

For all $k \ge 3$ there exists a map from \mathbb{Z}_2^k to \mathbb{Z}_2 whose expansion is a GPBF; whereas for odd k, no Bent function exists.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Preliminaries Our contribution

Thank you!!!

J.A. Armario*, R. Egan[†], D. L. Flannery[‡] Generalized partially bent functions and associated objects

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

References

- W. de Launey and D. L. Flannery, *Algebraic design theory*. Math. Surveys. Monogr. 175, American Mathematical Society, Providence, RI (2011).
- S. Mesnager, F. Özbudak, and A. Sınak, *Characterizations of partially bent and plateaued functions over finite fields.* Arithmetic of Finite Fields, 224–241, Lecture Notes in Comput. Sci. 11321, Springer, Cham, 2018.
- S. Mesnager, C. Tang, and Y. Qi, *Generalized plateaued functions and admissible (plateaued) functions.* IEEE Trans. Inf. Theory 63 (2017), no. 10, 6139–6148.

B. Schmidt, A survey of group invariant Butson matrices and their relation to generalized bent functions and various other objects. Radon Ser. Comput. Appl. Math. 23 (2019), 241–251.

X. Wang, and J. Zhou, *Generalized partially bent functions*. In: Future Generation Communication and Networking (FGCN 2007). vol. 1, pp. 16–21, IEEE (2007).

< ロ > < 同 > < 三 > < 三 >