Generalized partially bent functions and cocyclic Butson matrices

J.A. Armario ${ }^{\star}$, R. Egan ${ }^{\dagger}$, D. L. Flannery ${ }^{\ddagger}$

*Depart. Matemática Aplicada I, Universidad de Sevilla, Spain
${ }^{\dagger}$ School of Mathematical Sciences, Dublin City University, Ireland
\ddagger School of Mathematics, Statistics and Applied Mathematics, NUI Galway, Ireland

$$
19-21 \text { October, } 2022
$$

17th RECSI, Santander, Spain

Outline

(1) Preliminaries
(2) Our contribution

Index

(1) Preliminaries

(2) Our contribution

Boolean functions $f: \mathbb{Z}_{2}^{m} \rightarrow \mathbb{Z}_{2}$ in Cryptography

Symmetric Criptography

Cryptographic Boolean functions

Some Cryptographic criteria for Boolean functions in order to design "secure" cryptosystems
(1) Balanced
(2) Higher-order nonlinearity: Bent functions.
(3) Correlation immunity
(9) etc.

Some of these criteria are antagonistic! Tradeoffs between all these criteria must be found.

Cryptographic Boolean functions

Main problems to study:

- Interests are in four aspects:
(1) Characterization
(2) Constructions
(3) Classifications
(9) Enumerations
- Extensions of this theory to:
(1) Vectorial Boolean functions
(2) Generalized functions
(3) etc.

Our motivation.

B. Schmidt. A survey of group invariant Butson matrices..., Radon Ser. Comput. Appl. Math. 23 (2019), 241-251.

Theorem 1

Let $f: \mathbb{Z}_{q}^{m} \rightarrow \mathbb{Z}_{h}$ be a map. The following are equivalent:
(1) f is a Generalized Bent Function (GBF);
(2) $\left[\zeta_{h}^{f(x-y)}\right]_{x, y \in \mathbb{Z}_{q}^{m}} \in \mathrm{BH}\left(q^{m}, h\right)$ is equivalent to a coboundary matrix $M_{\partial f}$;
(3) f is a perfect h-ary (q, \ldots, q)-array.

Additionally, if h is prime and divides q^{m}, then (1)-(3) are equivalent to
(4) $\left\{(f(x), x) \mid x \in \mathbb{Z}_{q}^{m}\right\}$ is a splitting $\left(q^{m}, h, q^{m}, q^{m} / h\right)$-relative difference set in $\mathbb{Z}_{h} \times \mathbb{Z}_{q}^{m}$.

Definitions

Let q, m, h be positive integers, and let ζ_{k} be the complex $k^{\text {th }}$ root of unity $\exp (2 \pi \sqrt{-1} / k)$. Schmidt defines a map

$$
f: \mathbb{Z}_{q}^{m} \rightarrow \mathbb{Z}_{h}
$$

to be a generalized bent function (GBF) if

$$
\left|\sum_{x \in \mathbb{Z}_{q}^{m}} \zeta_{h}^{f(x)} \zeta_{q}^{-v x^{\top}}\right|^{2}=q^{m} \text { for all } v \in \mathbb{Z}_{q}^{m}
$$

where $|z|$ as usual denotes the modulus of $z \in \mathbb{C}$.

Example of GBF

$$
\begin{aligned}
f: & \mathbb{Z}_{2}^{2} \\
& \rightarrow \\
\left(x_{1}, x_{2}\right) & \mapsto
\end{aligned} x_{2} \cdot x_{2}
$$

v	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$\sum_{x \in \mathbb{Z}_{2}^{2}}(-1)^{f(x)+v x^{\top}}$	2	2	2	-2

Bent functions are of interest in cryptography, coding theory,...

Example of GBF (nonlinearity of Boolean functions)

$$
\begin{array}{ccccc}
f: & \mathbb{Z}_{2}^{2} & \rightarrow & \mathbb{Z}_{2} & \\
& \left(x_{1}, x_{2}\right) & \mapsto & x_{1} \cdot x_{2} & \\
& & & & \\
\left(x_{1}, x_{2}\right) & (0,0) & (0,1) & (1,0) & (1,1) \\
\hline f\left(x_{1}, x_{2}\right) & 0 & 0 & 0 & 1 \\
x_{2} & 0 & 1 & 0 & 1 \\
x_{1}+x_{2} & 0 & 1 & 0 & 0
\end{array}
$$

The Hamming distance of f to the 8 affine Boolean functions is either 1,2 or 3 . Therefore the nonlinearity of f is 1 .

Example of GBF (Cryptography)

Boolean functions with large nonlinearity are difficult to approximate by linear functions and so provide resistance against linear cryptanalysis.

Result

The largest nonlinearity of a Boolean function on \mathbb{Z}_{2} is $2^{n-1}-2^{n / 2-1}$ for n even. The functions attaining this bound, are called bent functions.

Definitions

Let H be a square matrix of order n with entries in $\left\langle\zeta_{k}\right\rangle=$ $\left\{\zeta_{k}^{\prime}: I=0, \ldots, k-1\right\}$. We say that H is a Butson Hadamard matrix if

$$
H H^{*}=n I_{n}
$$

where I_{n} is the $n \times n$ identity matrix and H^{*} is the complex conjugate transpose of H. We denote by $H \in \mathrm{BH}(n, k)$.

$$
H=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right], \quad H H^{*}=\left[\begin{array}{llll}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{array}\right]
$$

Definitions: Cocyclic Butson matrix

$$
H=\left[\begin{array}{rrrr}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right]
$$

indexing the rows and columns of H with the element of $\mathbf{Z}_{2}^{2}=\{(0,0),(0,1),(1,0),(1,1)\}$. We have

$$
\psi(x, y)=H_{x, y}, \quad x, y \in \mathbf{Z}_{2}^{2}
$$

satisfies that

$$
\psi(x, y) \psi(x y, z)=\psi(x, y z) \psi(y, z), \forall x, y, z \in \mathbf{Z}_{2}^{2}
$$

- ψ is a cocycle and H is a cocyclic Butson matrix.
- The "simplest" cocycles are the coboundaries.

Example of GBF: Butson Hadamard matrix

$$
\begin{gathered}
f: \begin{array}{cl}
\mathbb{Z}_{2}^{2} & \rightarrow \\
\left(x_{1}, x_{2}\right) & \mapsto \\
& \mapsto x_{1} \cdot x_{2}
\end{array} \\
M=\left[\zeta_{2}^{f(x-y)}\right]_{x, y \in \mathbb{Z}_{2}^{2}}=\left[\begin{array}{rrrr}
1 & 1 & 1 & -1 \\
1 & 1 & -1 & 1 \\
1 & -1 & 1 & 1 \\
-1 & 1 & 1 & 1
\end{array}\right]
\end{gathered}
$$

Observe

$$
H=P M Q^{T}, \quad \text { with } \quad P=Q=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
$$

Definitions

Let E be a group with a normal subgroup N of order m and index v. A (v, m, k, λ)-relative difference set in E relative to N (the forbidden subgroup) is a k-subset R of a transversal for N in E such that

$$
|R \cap x R|=\lambda \quad \forall x \in E \backslash N
$$

That is, x can be written as $r_{1} r_{2}^{-1}$ for λ different pairs $\left(r_{1}, r_{2}\right) \in R^{2}$.

We call R abelian if E is abelian, and splitting if N is a direct factor of E.

Example of GBF: relative difference set

$$
\begin{aligned}
& f: \quad \mathbb{Z}_{2}^{2} \quad \rightarrow \quad \mathbb{Z}_{2} \\
& \left(x_{1}, x_{2}\right) \mapsto x_{1} \cdot x_{2} \\
& R=\{(0,0,0),(0,0,1),(0,1,0),(1,1,1)\} \subset \mathbb{Z}_{2} \times \mathbb{Z}_{2}^{2} \\
& E=\mathbb{Z}_{2}^{3} \quad \text { and } \quad N=\{(0,0,0),(1,0,0)\}
\end{aligned}
$$

R is a $(4,2,4,2)$-RDS in $\mathbb{Z}_{2} \times \mathbb{Z}_{2}^{2}$.

Definitions

Let $\mathbf{s}=\left(s_{1}, \ldots, s_{m}\right)$ be an m-tuple of integers $s_{i}>1$, and let $G=\mathbb{Z}_{s_{1}} \times \cdots \times \mathbb{Z}_{s_{m}}$. A h-ary \mathbf{s}-array is merely a set map

$$
\phi: G \rightarrow \mathbb{Z}_{h}
$$

When $h=2$, the array is binary.

For $w \in G$, we define the periodic autocorrelation at shift w of an array ϕ, denoted $A C_{\phi}(w)$, by

$$
A C_{\phi}(w)=\sum_{g \in G} \zeta_{h}^{\phi(g)-\phi(g+w)}
$$

If $A C_{\phi}(w)=0$ for all $w \neq 0$, then ϕ is called perfect.

Example of GBF: perfect array

$$
\begin{aligned}
f: & \mathbb{Z}_{2}^{2}
\end{aligned} \quad \rightarrow \mathbb{Z}_{2}=\begin{array}{rlr}
\left(x_{1}, x_{2}\right) & \mapsto x_{1} \cdot x_{2}
\end{array}
$$

can be written as

$$
M_{f}=[f(x, y)]_{x, y \in \mathbb{Z}_{2}}=\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array} .
$$

Then:

w	$(0,0)$	$(0,1)$	$(1,0)$	$(1,1)$
$A C(w)$	4	0	0	0

Example of GBF: perfect array (Cryptography)

The absolute indicator of $f: \mathbb{Z}_{2}^{n} \rightarrow \mathbb{Z}_{2}$ is

$$
\delta(f)=\frac{1}{2^{n / 2}} \max _{w \neq 0}\left|A C_{f}(w)\right|
$$

This measures the resistance of a Boolean function against differential cryptanalysis.

Our contribution

Index

(1) Preliminaries

(2) Our contribution

Our contribution: Cocycles in stead of coboundaries

Theorem 1

Let $f: \mathbb{Z}_{q}^{m} \rightarrow \mathbb{Z}_{h}$ be a map. The following are equivalent:
(1) f is a Generalized Bent Function (GBF);
(2) $\left[\zeta_{h}^{f(x-y)}\right]_{x, y \in \mathbb{Z}_{q}^{m}} \in \operatorname{BH}\left(q^{m}, h\right)$ is equivalent to a coboundary matrix $M_{\partial f}$;
(3) f is a perfect h-ary (q, \ldots, q)-array.

Additionally, if h is prime and divides q^{m}, then (1)-(3) are equivalent to
(4) $\left\{(f(x), x) \mid x \in \mathbb{Z}_{q}^{m}\right\}$ is a splitting $\left(q^{m}, h, q^{m}, q^{m} / h\right)$-relative difference set in $\mathbb{Z}_{h} \times \mathbb{Z}_{q}^{m}$.

Our contribution: Cocycles in stead of coboundaries

Theorem 2

Let h be a prime divisor of q, and let $\phi: \mathbb{Z}_{q}^{m} \rightarrow \mathbb{Z}_{h}$ be an array with expansion ϕ^{\prime} of type $\mathbf{z} \neq \mathbf{0}$.
(a) The following are equivalent:
(i) $\mu_{\mathrm{z}} \partial \phi$ is orthogonal, i.e., $M_{\mu_{z} \partial \phi} \in \mathrm{BH}\left(q^{m}, h\right)$;
(ii) ϕ is a $\operatorname{GPh} A\left(q^{m}\right)$ of type \mathbf{z};
(iii) $\left\{g+K \in E / K \mid \phi^{\prime}(g)=0\right\}$ is a non-splitting
($q^{m}, h, q^{m}, q^{m} / h$)-relative difference set in E / K with forbidden subgroup H / K.

Our contribution in the general case (h-ary arrays)

Theorem 2 (continued)

(b) If $\mathbf{z}=\mathbf{1}$ then (i)-(iii) are equivalent to
(iv) ϕ^{\prime} is a generalized plateaued function, i.e.,

$$
\left|\sum_{x \in \mathbb{Z}_{h q}^{m}} \zeta_{h}^{\phi^{\prime}(x)} \zeta_{h q}^{-v \cdot x}\right|^{2}=\left\{\begin{array}{cc}
\left(h^{2} q\right)^{m} & v \in \mathcal{F} \\
0 & \text { otherwise }
\end{array}\right.
$$

where $\mathcal{F}=\left\{v \in \mathbb{Z}_{h q}^{m} \mid v \equiv \mathbf{1} \bmod h\right\}$.
(c) Let $h=q$ and $\mathbf{z}=\mathbf{1}$. Suppose that, for all $y \in \mathbb{Z}_{h}^{m} \backslash\{\mathbf{0}\}$ with $\sum_{i} y_{i} \equiv 0 \bmod h$, there exists $x \in \mathbb{Z}_{h}^{m}$ satisfying $\left(^{*}\right)$. Then (i)-(iv) are equivalent to
(v) ϕ^{\prime} is a GPBF.

Our contribution in the general case (h-ary arrays)

Remark

If $h=q$ in Theorem 2, then $|L| \cdot|\mathcal{F}|=(h q)^{m}$. This identity is the condition under which in the literature a $\operatorname{map} f: \mathbb{Z}_{q}^{m} \rightarrow \mathbb{Z}_{q}$ is called a generalized partially bent function.

Definition

A generalized partially bent function (GPBF) is a map $f: \mathbb{Z}_{q}^{m} \rightarrow \mathbb{Z}_{h}$ such that $\left|A C_{f}(x)\right| \in\left\{0, q^{m}\right\}$ for all $x \in \mathbb{Z}_{q}^{m}$.

Example 1

The map $\phi=\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 2 & 1\end{array}\right]$ on \mathbb{Z}_{3}^{2} is a $\operatorname{GP} 3 A(3,3)$ of type $\mathbf{z}=(1,1)$.
Its expansion $\phi^{\prime}: \mathbb{Z}_{9}^{2} \rightarrow \mathbb{Z}_{3}$ is defined by

$$
\left[\begin{array}{lllllllll}
0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 \\
0 & 1 & 0 & 1 & 2 & 1 & 2 & 0 & 2 \\
2 & 2 & 1 & 0 & 0 & 2 & 1 & 1 & 0 \\
1 & 1 & 1 & 2 & 2 & 2 & 0 & 0 & 0 \\
1 & 2 & 1 & 2 & 0 & 2 & 0 & 1 & 0 \\
0 & 0 & 2 & 1 & 1 & 0 & 2 & 2 & 1 \\
2 & 2 & 2 & 0 & 0 & 0 & 1 & 1 & 1 \\
2 & 0 & 2 & 0 & 1 & 0 & 1 & 2 & 1 \\
1 & 1 & 0 & 2 & 2 & 1 & 0 & 0 & 2
\end{array}\right] .
$$

We have

$$
A C_{\phi^{\prime}}\left(v_{1}, v_{2}\right)=\left\{\begin{array}{cl}
81 \zeta_{3}^{-\left(v_{1}+v_{2}\right) / 3} & v \in L \\
0 & v \notin L
\end{array}\right.
$$

where
$L=\{(0,0),(0,3),(0,6),(3,0),(3,3),(3,6),(6,0),(6,3),(6,6)\}$.
Therefore, ϕ^{\prime} is a generalized partially bent function.

The cocyclic $\mathrm{BH}(9,3), M_{f_{z}} \partial \phi$, (represented in logarithmic form) is:

$$
\left[\begin{array}{lllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 2 & 1 & 0 & 2 & 2 \\
0 & 1 & 1 & 0 & 0 & 2 & 2 & 1 & 2 \\
0 & 1 & 0 & 2 & 1 & 1 & 2 & 2 & 0 \\
0 & 2 & 0 & 1 & 2 & 2 & 1 & 1 & 0 \\
0 & 1 & 2 & 1 & 2 & 0 & 2 & 0 & 1 \\
0 & 0 & 2 & 2 & 1 & 2 & 0 & 1 & 1 \\
0 & 2 & 1 & 2 & 1 & 0 & 1 & 0 & 2 \\
0 & 2 & 2 & 0 & 0 & 1 & 1 & 2 & 1
\end{array}\right] .
$$

$$
\begin{aligned}
R=\{ & (0,0)+K,(0,1)+K,(0,2)+K,(1,0)+K,(1,2)+K, \\
& (1,7)+K,(2,3)+K,(2,4)+K,(2,8)+K\}
\end{aligned}
$$

is a $(9,3,9,3)$-RDS in E / K with forbidden subgroup L / K for $K=\{(0,0),(3,6),(6,3)\}$.

Finally,

$$
\mathcal{F}=\{(1,1),(1,4),(1,7),(4,1),(4,4),(4,7),(7,1),(7,4),(7,7)\}
$$

and

$$
\left|\sum_{x \in \mathbb{Z}_{9}^{2}} \zeta_{3}^{\phi^{\prime}(x)} \zeta_{9}^{-v x^{\top}}\right|^{2}=\left\{\begin{array}{cl}
729 & v \in \mathcal{F} \\
0 & v \notin \mathcal{F} .
\end{array}\right.
$$

Example 2

Let ϕ be the map on \mathbb{Z}_{2}^{3} with layers

$$
A_{0}=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \quad \text { and } \quad A_{1}=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]
$$

Here A_{i} is the layer on $\{i\} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, and $\phi(i, j, k)=A_{i}(j, k)$. Then ϕ is a $\operatorname{GPBA}(2,2,2)$ of type $\mathbf{1}$. In particular, the expansion of ϕ is a GPBF; whereas no GBF $f: \mathbb{Z}_{2}^{3} \rightarrow \mathbb{Z}_{2}$ exists.

Result (By a iterative procedure)

For all $k \geq 3$ there exists a map from \mathbb{Z}_{2}^{k} to \mathbb{Z}_{2} whose expansion is a GPBF; whereas for odd k, no Bent function exists.

Thank you!!!

J.A. Armario ${ }^{\star}$, R. Egan ${ }^{\dagger}$, D. L. Flannery ${ }^{\ddagger} \quad$ Generalized partially bent functions and associated objects

References

W. de Launey and D. L. Flannery, Algebraic design theory. Math. Surveys. Monogr. 175, American Mathematical Society, Providence, RI (2011).

S. Mesnager, F. Özbudak, and A. Sınak, Characterizations of partially bent and plateaued functions over finite fields. Arithmetic of Finite Fields, 224-241, Lecture Notes in Comput. Sci. 11321, Springer, Cham, 2018.

S. Mesnager, C. Tang, and Y. Qi, Generalized plateaued functions and admissible (plateaued) functions. IEEE Trans. Inf. Theory 63 (2017), no. 10, 6139-6148.
B. Schmidt, A survey of group invariant Butson matrices and their relation to generalized bent functions and various other objects. Radon Ser. Comput. Appl. Math. 23 (2019), 241-251.
X. Wang, and J. Zhou, Generalized partially bent functions. In: Future Generation Communication and Networking (FGCN 2007). vol. 1, pp. 16-21, IEEE (2007).

