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Cryptographic Boolean functions

Some Cryptographic criteria for Boolean functions in order to
design “secure” cryptosystems

@ Balanced
@ Higher-order nonlinearity: Bent functions.
© Correlation immunity

Q etc.

Some of these criteria are antagonistic | Tradeoffs between all
these criteria must be found.
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Cryptographic Boolean functions

Main problems to study:

@ Interests are in four aspects:
@ Characterization
@ Constructions
© C(lassifications
© Enumerations

@ Extensions of this theory to:

@ Vectorial Boolean functions
@ Generalized functions

@ etc.

J.A. Armario*, R. Egan’, D. L. Flannery? Generalized partially bent functions and associated objects



Preliminaries

Our motivation.

B. Schmidt. A survey of group invariant Butson matrices..., Radon Ser. Comput. Appl. Math. 23 (2019), 241-251.

Let f: Zg — Zp, be a map. The following are equivalent:

(1) fis a Generalized Bent Function (GBF);

(2) [C;(Xfy)]xyyezg € BH(q™, h) is equivalent to a coboundary
matrix Mpyr;

(3) fis a perfect h-ary (g, ..., g)-array.

Additionally, if h is prime and divides g™, then (1)—(3) are
equivalent to

(4) {(f(x),x) | x € Z7} is a splitting (¢, h, g™, q / h)-relative
difference set in Zj x Zg'.
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Definitions

Let g, m, h be positive integers, and let ¢, be the complex k™ root
of unity exp (2mv/—1/k). Schmidt defines a map

f::zg’—% Zh

to be a generalized bent function (GBF) if

‘ Z Q;(x)gvﬂ

xELF

2
=q" forall v € Z7,

where |z| as usual denotes the modulus of z € C.
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Example of GBF

(x1,%) = x1-x2

v (0,0) | (0,1) | (1,0) | (1,1)

ST ()2 2 2 | -2

xezg

Bent functions are of interest in cryptography, coding theory,...

J.A. Armario*, R. Egan’, D. L. Flannery? Generalized partially bent functions and associated objects



Preliminaries

Example of GBF (nonlinearity of Boolean functions)

fr 72 o I

(X1,X2) = X1 X2

(x1, x2) (0,0) (0,1) (1,0) (1,1)

f"(Xl7 X2) 0 0 0 1
X2 0 1 0 1
X1 + Xo 0 1 0 0

The Hamming distance of f to the 8 affine Boolean functions is
either 1, 2 or 3. Therefore the nonlinearity of f is 1.
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Example of GBF (Cryptography)

Boolean functions with large nonlinearity are difficult to
approximate by linear functions and so provide resistance against
linear cryptanalysis.

The largest nonlinearity of a Boolean function on Z; is
2n=1 _ 2n/2=1 for n even. The functions attaining this bound, are
called bent functions.
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Definitions

Let H be a square matrix of order n with entries in ((x) =
{C,’( : 1=0,...,k—1}. We say that H is a Butson Hadamard
matrix if

HH* = nl,

where [, is the n x n identity matrix and H* is the complex
conjugate transpose of H. We denote by H € BH(n, k).

1 1 1 1 4000
1 1 -1 -1 ., |0 400
A=11 1 1 2 P =100120
1 -1 -1 1 000 4
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Definitions: Cocyclic Butson matrix

1 1 1 1
1 1 -1 -1
H=11 1 1 1]

1 -1 -1 1

indexing the rows and columns of H with the element of
Z3 = {(0,0),(0,1),(1,0), (1,1)}. We have

1/1(X7)/)=Hx,y, X,yEZ%
satisfies that
b(x, y)U(xy, z) = »(x, yz)e(y, 2), Vx,y,z € Z}

@ 1) is a cocycle and H is a cocyclic Butson matrix.

@ The “simplest” cocycles are the coboundaries.
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Example of GBF: Butson Hadamard matrix

(X1,X2) = X1 X2

1 1 1 -1
M= ye=| 1 | 1 ]
-1 1 1 1

Observe
100 0
H=PMQ", with P=Q= 8 (1) (1) 8
000 —1
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Definitions

Let E be a group with a normal subgroup N of order m and index
v. A (v, m, k, \)-relative difference set in E relative to N (the
forbidden subgroup) is a k-subset R of a transversal for N in E
such that

IRNXxR| =X Vxe E\N.

That is, x can be written as rlrgl for A different pairs
(r1, r2) S R2.

We call R abelian if E is abelian, and splitting if N is a direct
factor of E.
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Example of GBF: relative difference set

f: 7: = Iy
(x1,x2) = Xx1-X2
R = {(0, 0,0), (0, 0,1), (0, 1,0), (1, 1,1)} C Zy x Z2
E=73 and N={(0,0,0),(L,0,0)}

x\ y~ ! [(0,00) (00,1) (0,1,0) (1,1,1)
(0,0,0) (0,0,1) (0,1,0) (1,1,1)
(0,0,1) |(0,0,1) (0,1,1) (1,1,0)
(0,1,0) |(0,1,0) (0,1,1 (1,0,1)
(1,1,1) |(1,1,1) (1,1,0) (1,0,1)

Ris a (4,2,4,2)-RDS in Zp x Z3.
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Definitions

Let s = (s1,...,Sm) be an m-tuple of integers s; > 1, and let
G =Zs X -+ X ZLs,. A h-ary s-array is merely a set map

¢ G — Zp.
When h = 2, the array is binary.

For w € G, we define the periodic autocorrelation at shift w of an
array ¢, denoted ACy(w), by

ACcf)(W) _ Z Cf(€)*¢(€+w)'
geai

If AC4(w) =0 for all w # 0, then ¢ is called perfect.
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Example of GBF: perfect array

f: ZS — ZQ
(X17X2) = X1 X2
can be written as
00
My = [f(va)]X,,VEZz = 0 1°

Then:

AC(w) | 4 0 0 0
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Example of GBF: perfect array (Cryptography)

The absolute indicator of f: Z5 — Zo is

1
3(F) = a3 max|AC (w)|

This measures the resistance of a Boolean function against
differential cryptanalysis.
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Our contribution: Cocycles in stead of coboundaries

Let f: Zg — Zp, be a map. The following are equivalent:
(1) fis a Generalized Bent Function (GBF);

(2) [ ;(X_y)] x,yGZg

matrix Mpyr;

€ BH(q™, h) is equivalent to a coboundary

(3) fis a perfect h-ary (q,..., q)-array.

Additionally, if h is prime and divides g™, then (1)—(3) are

equivalent to

(4) {(f(x),x) | x € Zg'} is a splitting (g™, h, g™, g™/ h)-relative
difference set in Zj x Zg'.
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Our contribution: Cocycles in stead of coboundaries

Let h be a prime divisor of g, and let ¢: Zg' — Zj, be an array
with expansion ¢ of type z # 0.
(a) The following are equivalent:
(i) p,0¢ is orthogonal, i.e., M, 0, € BH(q™, h);
(ii) ¢ is a GPhA(q™) of type z;
(i) {g+ K € E/K | ¢'(g) =0} is a non-splitting
(g™, h,q™, g™/ h)-relative difference set in E/K with forbidden
subgroup H/K.
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Our contribution in the general case (h-ary arrays)

Theorem 2 (continued)
(b) If z=1 then (i)—(iii) are equivalent to
(iv) ¢ is a generalized plateaued function, i.e.,

‘ Z Cfl(X)C;V.X 2 _ { (hzq)m verF
q

0 otherwise,
Xethq

where 7 = {v € Z]" | v =1 mod h}.

(c) Let h= g and z= 1. Suppose that, for all y € Z" \ {0} with
> ¥i =0 mod h, there exists x € Z satisfying (*). Then
(i)—(iv) are equivalent to
(v) ¢’ is a GPBF.
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Our contribution in the general case (h-ary arrays)

If h= g in Theorem 2, then |L| - |F| = (hq)™. This identity is the
condition under which in the literature a map f: Zg' — Zgq is
called a generalized partially bent function.

Definition

A generalized partially bent function (GPBF) is a map
f:Zg — Zp such that |[AC¢(x)| € {0,q™} for all x € Z7'.
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Example 1

0 0 O
Themap¢=|0 1 0 | onZ3isa GP3A(3,3) of type
2 21

z=(1,1).
Its expansion ¢': Z% — Zs is defined by

HFNNORFREFENOO
HFONONKFKNHFO
ONNNRFEFHFOO
NOOKFRNNOKKF
NHEFOFRONONHK
HOOONNNKK
O FEFNOOFRLDNMN
ONHFEFNHFROF,RON
NHFRFFRFPR,OOOMNMN
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We have

gr¢; (B e

AC¢’(V17 V2) = { 0 y ¢ L

where

L = {(0,0),(0,3),(0,6),(3,0),(3,3),(3,6),(6,0),(6,3),(6,6)}.

Therefore, ¢’ is a generalized partially bent function.
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The cocyclic BH(9, 3), Mg4, (represented in logarithmic form) is:

[eNeNeNoNolNoNoNe Nl
NNORNHFHOO
NHFEFNNOOFRFO
ONNHFEFEFNORFRO
O FEF NNFONO
HONONKENFEO
HEHEHONFKFNNOO
NOFRFOFNKFEDNO
HFNRFREFRFOONMDNO
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={(0,0)+ K,(0,1) + K,(0,2) + K, (1,0) + K, (1,2) + K,
(L,7)+ K, (2,3) + K,(2,4) + K,(2,8) + K}
isa(9,3,9,3)-RDS in E/K with forbidden subgroup L/K for
K ={(0,0),(3,6),(6.3)}.

Finally,

F={(1,1),(1,4),(1,7),(4,1),(4,4),(4,7),(7,1),(7,4),(7,7)}

and

Pyl

XEZS

2 [ 729 veF
1 0 véF
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Example 2

Let ¢ be the map on Zg with layers

01 01
AO = |:1 1:| and Al = |:0 0:| .
Here A; is the layer on {i} x Zo x Zo, and ¢(i,j, k) = Ai(j, k).

Then ¢ is a GPBA(2,2,2) of type 1. In particular, the expansion
of ¢ is a GPBF; whereas no GBF f: Z% — Z» exists.

Result (By a iterative procedure)

For all kK > 3 there exists a map from Z’z‘ to Zy whose expansion is
a GPBF; whereas for odd k, no Bent function exists.
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