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We want

▶ secure messages, authenticate participants, sign documents

with simple protocols based on (hopefully) hard (mathematical)
tasks.
For this you always need a key space from which the sender
chooses a (secret) key which the receiver knows and uses for
decryption. The method is thus symmetric.
We focus on the key exchange.
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How to exchange keys?



formerly ...

it was simply assumed that the sender and receiver already shared
a secret key.
The group of participants was “ overlookable and trustworthy”
(one believed).
If this was not yet the case, then the key transfer was done either

▶ in personal contact or

▶ again encrypted (e.g. via encrypted radio or coded machines),
alternatively

▶ by a “trusted” central institution that distributed keys (how?).



nowadays ...

one has to deal with many and partly unknown participants and
work in open networks like the Internet.
Just at the right time (1976) the work of
W. Diffie and M. E. Hellman: New directions in cryptography
was published.

Each participant A in the system has two keys, a
public key pA and a secret key sA.
Two participants A,B can compute a common key
s = sA,B = sB,A from (pA, sB) and (pB , sA) respectively, but it is
very hard for all C ̸= A to get information about sA.
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We now specify the somewhat blurred expression “it’s hard”:
What is hard, what is fast?



GameRules:
All participants in the crypto game have machines at their
disposal, whose mode of operation and capabilities (speed, memory
capacity, communication channels ...) are “known”.

Predictions for
the future become important, too, even speculative ones.
In addition, there is a certain pessimism: one’s own party has
limited resources, while the opponent has only very generous limits
to observe (“money doesn’t matter”), and may conceive attacks
with machines that may not even be available at the moment.
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Let
fN : AN → BN

be mappings from sets AN to sets BN .

The algorithmic evaluation
fN(r) (at a random argument r) has (time/memory) complexity
F (N).

fN = O(g)

if there is d ∈ R>0 with F (N) ≤ d · g(N). Define

LN(α, c) := exp(c · log(N)α · log log(N)1−α).
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Then the (probabilistic) asymptotic time (memory) complexity of
the family fN is called

▶ polynomial if FN = O(LN(0, c)) (“fast algorithm”)

▶ exponential if FN = O(LN(1, c)) (“hard algorithm”) and

▶ subexponential if there exists 0 < α < 1 with
FN = O(LN(α, c))

in log(N). Subexponential complexity is a very interesting case
between the two extremes.
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Binary Complexity

We assume that the machines used are binary computers.
Algorithms are sequences of bit operations applied to bit strings.
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Examples of algorithms with polynomial bit complexity:

▶ the (extended) Euclidean algorithm and

▶ the exponentiation and inversion in finite groups of known
order (expressed in costs for group operations).

▶ Hence: Exponentiation in Fq is polynomial in log(q), as is
multiplication and the evaluation of polynomials of fixed
degree.

▶ For given n and x0 ≤ n prime to n and random x ≤ n, the
computation of a number k with x ≡ k · x0 mod n is
polynomially in n.
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Subexponential Bit Complexity

Factorization in N
because of algorithms using the number field sieve with α = 1/3.



Example for exponential bit complexity:

Definition
Let (G ,+) be a finite cyclic group with generator g0 with its usual
Z-module-structure.

The discrete logarithm (DL) of g ∈ G to g0 is defined by

logg0(g) = min{n ∈ N; n · g0 = g}.
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Definition
A black-box group (G ,m, i) is a set with two “oracles” m(., .) and
i(.) that provide to pairs (g1, g2) ∈ G × G the product m(g1, g2)
and to elements g ∈ G the inverse i(g) such that the group laws
hold (including the existence of 0G with 0G = m(g , i(g)) as
neutral element).



Theorem (U. Maurer & S.Wolf (1998)
Let G be a black-box group of prime order q with generator g0.
The discrete logarithm logg0 in G has the (probabilistic)
bit-complexity

P(q) = Θ(q1/2),

i.e. q1/2 = O(P(q)) and P(q) = O(q1/2).

P(q) = O(q1/2) holds in all cyclic groups of order q (Pollard,
Shanks).
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Diffie-Hellman Key Exchange



Diffie-Hellman original

Observation: Let q = pd be a prime power, ℓ a prime dividing
q − 1, and ζℓ ∈ Fq a ℓ-th unit root. Then

(ζk1ℓ )k2 = ζk1·k2ℓ = (ζk2ℓ )k1 .

If one agrees (publicly) on an isomorphism

fq : Fq → (Z/p)[X ]/(m(X )),

then P1,P2 can be publicly create a “secret”.
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P i choosesl si (e.g. randomly in 0, ..., ℓ− 1) and sends

pi := fq(ζ
si
ℓ ).

P1 computes s := ps12 which is equal to ps21 .
For security, it is necessary that the DL is hard in
(Z/p)[X ]/(m(X )∗[ℓ].
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Already Gauß ....



was interested in the discrete logarithm in F∗
q and called it “index”

(Disquisitiones Arithmeticae (1801)).

C.G. Jacobi calculated tables up to p = 1000 (1839).
Kraichik (1922) developed the index-calculus algorithm, which
has been continuously reinvented and refined in cryptography from
1980 to the present (A. Joux, D. Robert and many others).
It has subexponential complexity (with relatively small constants),
which become dramatically smaller when q is not a prime number.
To be on the safe side, ℓ should be of size 4000 bits and q has to
be “almost” prime.
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Obvious generalization: DL systems to cyclic groups

(C =< a0 >,+) with ℓ · a0 = 0.

fC : C ↪→ N

such that fC (a1 + a2) is (quickly) computable from fC (a1) and
fC (a2).
Thus fC (C ) becomes a Z-set with (fast) scalar multiplication.
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Key Exchange:

P1,P2 randomly choose k1, k2 and compute and publish the public
keys

pi := fC (ki · a0))(i = 1, 2).

P1 calculates the number s := k1 · fC (k2 · a0) which equals
k2 · fC (k1 · a0).
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The construction of cryptographically strong groups C
(with numbering)

(in the world of binary computers)
is a very successful area of current public key cryptography.

Mathematical Task:
Construct (a family of) groups G with:
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1. Elements in G can be presented in a compact way
(O(log(| G |)) bits are needed)

2. Addition and inversion are given by algorithms, which can be
implemented easily and efficiently and are very fast.
(Complexity O(log(| G |)).)

3. The computation of the DL in G (for random elements) is (to
the best of our knowledge) very difficult and therefore not
feasible in practice (complexity ideally exponential in | G |), in
particular | G | must be divisible by a large prime number.



The horizon widens: Arithmetic Geometry

Idea: F∗
q = Gm(Fq) is the Picard group of divisors of a projective

curve (of arithmetic genus 1) over Fq.
So: Find G as a subgroup of Pic0C where C is a projective curve
over a finite field.
One quickly sees that if one wants to achieve greater security than
with classical DL, one must choose C as smooth projective curve
with (geometric) genus gC ≥ 1.
Can we find families of curves such that for large subgroups of
Pic0C the conditions from above are satisfied?
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The key for the arithmetic of curves C over fields K is the
Theorem of Riemann-Roch.



We formulate consequences of it.
Theorem

▶ C is over K birationally equivalent to a plane projective curve
of degree O(gC ).

▶ In every divisor class of degree gC there is a positive divisor.

It follows that, for K = Fq, Pic
0
C is a finite abelian group, and that

the elements can be represented with a number of bits that is
polynomial in gC and log q.
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The effectiveness of the addition is described by the very
remarkable result of F. Hess and C. Diem.

Theorem
Let C be a curve of genus gC over Fq.
Then the addition in Pic0C can be performed (probalistically) with
a number of bit operations bounded (explicitly) polynomially in gC
(fixed for q) and log(q) (fixed for gC ).
Both the methods and the result are analogous to the results for
computing ideal classes of number fields; the role of Minkowski’s
lattice point theorem is taken over by Riemann-Roch theorem.
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Thus, subgroups of Pic0C satisfy conditions 1) and 2) for moderate
gC if we succeed in finding curves whose Picard groups contain
subgroups of large prime order. The strategy is to choose (with
certain conditions) random curves C of fixed genus g over suitable
fields Fq and then compute | Pic0C |.

The main tool is the theory of the local L-series of the Jacobian
variety of C determined by the characteristic polynomial of the
Frobenius endomorphism.
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The fundamental result is due to Hasse, Deuring (for g = 1) and
Weil.

A corollary is:
||Pic0C | − qgC | = O(qgC−1/2).

This implies: If one could achieve “almost’ ’ generic security for
the DL and aims at the security level 256 bit the size of gC log(q)
has to be ∼ 512 bit.
For gC > 3 and random curves this is currently out of range.
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“Fortunately”, security analysis shows that for cryptographic
purposes this would be of no use either.

The attacks (algorithms for
calculating the DL) can be found under the keywords: Tate pairing
(F-Rück), Weil-Descent and above all again: Index-Calculus.
Results of Adleman and Huang showed already 1996 that Picard
groups of curves of large genus become insecure (subexponential
complexity).
Results of Gaudry et al. for small g describe exponential attacks,
but are much faster than the generic attacks (< qg/2).
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This excludes curves of genus > 4 and hyperelliptic curves
of genus 4

.



But the most powerful result came from C. Diem
Let C be a curve with a plane model C ′ of degree d (singularities
are allowed). (For non-hyperelliptic curves d = 2gC − 2, for
hyperelliptic curves d = 2g + 2 is possible).
Theorem
Let d ≥ 4 such that d or d − 1 is a prime number.
Then the DL in Pic0C of curves birationally equivalent to plane
curves of degree d can be calculated (except for log factors) in

expected time O(q2−
2

d−2 )



For genus 4 and non-hyperelliptic curve C we get d = 6 and thus
the complexity of DL is lowered, up to log factors, to O(q3/2).
This is significantly smaller than

q2 = |Pic0C |1/2,

and therefore (together with a result of Gaudry) eliminates curves
of genus 4 for DL systems.



For gC = 3 and C is nonhyperelliptic, d = 4, and thus the
complexity of the DL is restricted by

O(q2−
2

4−2 ) = O(q),

which is too small.
Since there are “many” hyperelliptic curves with gC = 3 whose
Jacobian is isogenous to that of a non-hyperelliptic curve, one
should avoid curves of genus 3.



Counting Points

The only remaining candidates are curves of genus 1 and 2 over
prime fields.
From now on: g = 1 and C = E .
(More difficult but possible is the construction of cryptographically
strong curves of genus 2.)

R. Schoof:
The theorem of Hasse-Weil, the Chinese Remainder Theorem and
the evaluation of the operation of the Frobenius endomorphism ϕq
on small order torsion points yields in principle for all abelian
varieties A of fixed dimension, thus also for elliptic curves, a point
counting algorithm polynomial in log(q) for |A(Fq)|.
In practice this is too slow.
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Counting is accelerated enormously by the (SAE) algorithm
(Schoof, Atkin, Elkies).
The key is to determine the action of ϕq on the
isogeny graph of A.

This works quite satisfyingly for A = JC for gC = 2 and excellently
for gE = 1.
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The background for this is the theory of moduli schemes of abelian
varieties with level structure, for g = 1 these are moduli curves,
which have a tremendously rich arithmetical and geometrical
structure connected to Galois representations via modular forms
(Fermat is around the corner).
(SAE) uses the cover X1(n) → X0(n) of degree ∼ n.
The complexity of point counting is then (with a slight heuristic)
reduced to O(log(q)5), and SAE yields cryptographically suitable
elliptic curves over prime fields Fp with p ∼ 512 bits without
relevant problems.



This is the satisfyingly effective and stable present state of the
art for public key exchange (and for authentication and signature).
But in the future there are dark clouds (still quite distant (?)):

quantum computer,

and thus the security in the world of Q − bits has to be analyzed.



Future

Q-bit-complexity
The possibility that quantum computing (i.e., the use of machines
based on the manipulation of Q-bits (ternary objects with effects
from quantum physics)) may be feasible in the foreseeable future,
opens up completely new aspects for the discussion of
crypto-primitives.
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opens up completely new aspects for the discussion of
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A consequence:

We have good reasons to assume that the bit-complexity for a
family of crypto-primitives behaves exponentially, but it turns out
that the Q-bit complexity is subexponential or even polynomial.



The key tool for this is Quantum Fourier Transform (QFT), a
linear transform on quantum bits and the quantum analog of the
discrete Fourier transform.

With this one obtains (probalistic) estimates of the eigenvalues of
unitary operators (cf. D. Coppersmith (1994). “An
approximate Fourier transform useful in quantum factoring”.
T. R. RC19642, IBM)
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New relationships between objects proposed as crypto-primitives of
public-key methods are of particular interest.

See Oded Regev: New lattice based cryptographic
constructions, J. ACM 51 (2004).
For example, the problem of shortest vectors in lattices is related
to two problems for dihedral groups we shall state next.



New relationships between objects proposed as crypto-primitives of
public-key methods are of particular interest.
See Oded Regev: New lattice based cryptographic
constructions, J. ACM 51 (2004).
For example, the problem of shortest vectors in lattices is related
to two problems for dihedral groups we shall state next.



Hidden subgroups:

Let H < G and f : G → S be a black box function (e.g., an
oracle) with f (a) = f (b) exactly when a ∼ b in G/H.
Determine H!

Related is the Hidden Shift Problem (HSP):
Let H be a G -set and f0 : H → S be a black box function.
For g0 ∈ G define fg0 : H → S by fg0(h) := f0(g0 · h).
Compute g0.
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▶ Shor’s algorithm and its extension solve the hidden subgroup
problem for abelian groups in polynomial time in the length
of the output function.

▶ Kuperberg’s algorithm solves HSP in subexponential time if
G is abelian.



Consequence of Shor’s algorithm:

Discrete logarithms in finite abelian groups and the factorization of
natural numbers can be computed by quantum computers in
polynomial time.



Key Exchange with Graphs



Abstract Setting

Let C, C1, C2 be small categories, i.e. objects are sets and
morphisms are mappings.
Let G,G1,G2 be graphs with respective vertices
M = {Ai},M1 = {A1

j },M2 = {A2
k} consisting of objects in

C, C1, C2 with (directed) edges K,K1,K2 consisting of (finitely
many) morphisms between vertices in the respective graphs.

Let F i : G i → G be mappings of graphs (e.g., inclusions).
Paths are denoted by s(j , k) and s i (j , k), respectively.
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Definition

The tuple G,G1,G2,F 1,F 2 is of Diffie-Hellman type if there is
there is a pair of algorithms DH = (DH1,DH2), so that

1. to each path s1 := s10,j1 in G1 and each endpoint A2
j2
of a path

s2 := s2(0, j2), DH
1 computes a path gj2,k := DH1(s1,A2

j2
)

from G, and

2. to each path s2 := s20,j2 in G2 and A1
j1
, DH2 computes a path

gj1,k := DH2(s2,A1
j1
) from G such that

3. the endpoint of gj1,k ◦ F 1(s1) is equal to the endpoint of
gj2,k ◦ F 2(s2).
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Diffie-Hellman Type Key Exchange

Private Key
Two partners P1 and P2 want to have a shared secret.
They use (G,G1,G2,F 1,F 2) of Diffie-Hellman type with algorithms
DH = (DH1,DH2).
The private key space of P i consists of paths {s i0,ji} of G i

P i selects s i .
The public key pi of P

i is the endpoint Ai
ji
.

The other partner (and any eavesdropper) can use this information.
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Key Exchange

P1 and P2 calculate the path

DH1(s10,j1 ,A
2
j2)

respectively

DH2(s20,j2 ,A
1
j1)

in G
and have the endpoint of these paths in G as a common secret.



Remarks

To make the procedure feasible, objects and the evaluation of
morphisms including composition must be fast (depending on the
desired security level).

It is often useful to vary the paths, e.g. by splitting them into
partial paths, in order to increase the effectiveness. This can also
be included in the definition of the graph G i (e.g. one can require
that the degrees of the morphisms to edges and the lengths of the
paths are restricted). This is then public information.
The resulting endpoint after application of DH i is independent of
the choice of the choosen paths.
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The security of the key exchange depends on the complexity of the
Diffie-Hellman Computional Problem (CDHP)
To known endpoints Ai in Mi of random paths s i = s(A0,Ai ) in
G i calculate
A3 ∈ M with A3 = DH1(s1,A2) (without knowing s1) or
analogously
A3 = DH2(s2,A1)



Global Diffie-Hellman Graphs

We shall now describe one special case where one can hope to
organize a fast key exchange.

1) All vertices in G i and G are contained in a set A.
2) For vertices Ai

1,A
i
2 in G i , the edges are

K i (1, 2) ⊂ {f i|Ai
1
; f i ∈ End(A) with f i (Ai

1) ⊂ Ai
2}.

3.)The key space of P i is a subset K i ⊂ End(A).
4.)Commutativity (KO): K 1 commutates with K 2.
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Let s1, s2 be paths in G1 and G2, respectively, with starting point
A0 and with endpoints A1 and A2, respectively, with associated
endomorphisms f 1 and f 2 of A, so in particular f i (A0) ⊂ Ai .

Define DH1(s1,A2) as a path in G with starting point A2 = f2(A0)
and ending point f1(A2).
DH2(s2,A1) as a path in G with starting point A1 = f1(A0) and
end point f2(A1).
Because of (KO) DH1 and DH2 satisfy the conditions for
Diffie-Hellman graphs with morphisms F i = inclusion .
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Example: G -sets

Let G be a (semi)group and A be a G -set on which G acts simply
transitive (for simplicity).
For example, let A be a group and let the G -operation be attached
to a principal homogeneous space in H1(G ,A).
( F., STORK workshop, Bruges (Belgium), 26-27 November 2002,
J.-M. Couveignes. Hard homogeneous spaces, 1997. Expose)
Let G1,G2 be subgroups of G with Gi ⊂ Z (Gj) for i ̸= j .
For g ∈ G define tg ∈ Endset(A) by a 7→ tg (a) := g · a.
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Example: G -sets

Let G be a (semi)group and A be a G -set on which G acts simply
transitive (for simplicity).
For example, let A be a group and let the G -operation be attached
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For g ∈ G define tg ∈ Endset(A) by a 7→ tg (a) := g · a.



The graphs G,G1,G2 have as objects {a} ⊂ A and
Mori ({ak}, {al}) = {tgi , gi ∈ Gi ; tgi (ak) = al}.
The key space for P i is Gi .
The centralizer condition implies that the conditions for global
Diffie-Hellman graphs are satisfied.
If G is abelian, it follows from Kuperberg’s algorithm that
(CDHP) has at most subexponential complexity.
Thus the system is not necessarily unsafe, possibly one can get a
safe system by sufficiently large parameter choice.



Examples based on isogeny classes of elliptic curves

The K̄ -isomorphism class of E is determined by the absolute
invariant jE ∈ K0.
Let E ,E ′ be two elliptic curves over K0.
An isogeny η : E → E ′ is a non constant homomorphism in
Hom(E ,E ′), the kernel of η is a finite group scheme in E whose
order is equal to the degree of η.
Definition
E is ordinary if End(E ) is commutative, else E is supersingular.
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Theorem

Let E be an ordinary elliptic curve over a field K0.

▶ Then End(E ) = Z (general case) or equal to an order
OE ⊂ Q(

√
−d) (CM case).

▶ Assume that E has CM with OE .
Let SE be the set of C-isomorphism classes E ′ with
End(E ′) = OE .
Then SE is a Pic(OE ) set.

▶ Explicitly: For c ∈ Pic(OE ), A ∈ c and C/OE = E0 we get
c · [E0] is the class of C/A.
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LiftingTheorem of Deuring.

Let E be an ordinary elliptic curve over Fq.
Then, up to C-isomorphisms, there is exactly one elliptic curve Ẽ
defined over a number field K such that

1. there is a prime divisor P of K with

Ẽ mod P ∼= E ,

and

2. End(E ) = End(Ẽ ) = OE .



Key Exchange à la Couveignes-Stolbunov

Let E0 be an elliptic curve over Fq with End(E0) = O.
Let SE0 be the set of isomorphism classes of elliptic curves over Fq

with endomorphism ring O.
According to Deuring, SE0 is a PHS under Pic(O).
As described above, we use (SE0 , [E0],G = Pic(O)) = G1 = G2)
for key exchange.
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Explicit: Key Exchange

P1 selects c1 ∈ Pic(O) and publishes the j-invariant j1 of c1 · E0.
P2 lifts the curve belonging to j1 and applies the ideal class c2

chosen by it.
The common key of P1 and P2 is the j-invariant reduction of the
found curve.

This is feasible since one can find enough isogenies which are
composites of isogenies of small degree (smoothness) and then
apply formulas of Vélu.
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The security depends on the isogeny problem:
Find an isogeny between two isogenous elliptic curves (with known
ring of endomorpisms).
(Question:Is this equivalent to the HSP?)

The isogeny problem has bit-complexity
O(q1/4+o(1) log2(q) log(q)). (Kohel, Galbraith, Hess, Smart et al.)
and subexponential Q-bit complexity (Kuperberg, explicitly see
Childs-Jao-Soukharev).
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Supersingular Elliptic Curves

The disadvantage (besides the subexponential complexity) of the
above system is its slowness (in spite of all the tricks), which is due
to the structure of the class group of O.
The idea of Castryck-Lange-Martindale-Panny-Renes and of DeFeo
and Jao is to use E with E × Spec(Fq) supersingular.
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Supersingular

elliptic curvesE are isotrivial over Fp2 , i.e. jE ∈ Fp2 .
Take E over Fp2 . Then |E (Fp2)| = (p ± 1)2, and the sign depends
on the twist class of E .

EndFp
(E ) is a maximal order in the quaternion algebra Qp which

is unramified outside ∞ and p.
If E is defined over Fp, then EndFp(E ) is an order O in Q(

√
−p).
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The system of C-L-M-P-R

Let E be an elliptic curve defined over Fp and supersingular over
Fp.
The class group of the order OE ⊂ Q(

√
−p) operates on the

Fp-isogeny classes of E0.
It is controlled by p.

A clever choice of p allows us to assume that it is generated by
powers of elements of order 2 and 3.
The key exchange can use add and double algorithms and is
therefore much faster than the key replacement for ordinary elliptic
curves.
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therefore much faster than the key replacement for ordinary elliptic
curves.



Of course, the security of the above system is again only
subexponential (at best).
One hoped to improve this in the next example, which is, as we
present it here, not a global Diffie-Hellman graph.



The De Feo-Jao-Plût Key Exchange System

Find and take p = ra · sb · f − 1 with p ∼= 1 mod 4 where r , s are
small distict primes, e.g. equal to 2 and 3.
E0 : Y

2Z = X 3 + XZ 2 is a supersingular elliptic curve over Fp2

with |E0(Fp2)| = (ra · sb · f )2.
Fix a level ra structure (P0

1 ,P
0
2 ) and a level sb structure (Q0

1 ,Q
0
2 )

of E0.
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We define a DH graph structure.

The vertices of the graph G are Fp2-isomorphism classes of
supersingular elliptic curves E defined over Fp2 and isogenous to
E0.
The edges of G are cyclic Fp2- isogenies whose degree divides
ra · sb.
The vertices of the graph G1 are Fp2-isomorphism classes of
supersingular elliptic curves E defined over Fp2 together with a
level sb structure (Q1,Q2).
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The edges of G1 are isogenies φ : E → E ′ with deg(φ)|ra.
The endpoints of the edges are (E ,Q1,Q2), (E

′, φ(Q1), φ(Q2)).

The graph G2 is obtained by reversing the roles of r , s and
(P1,P2), (Q1,Q2)
The mappings of G i to G are given by forgetting the level
structures.
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Key Exchange:

The partner P1 chooses in the key space (Z/ra)2 the pair (n1, n2)
and the isogeny
η : E0 → E0/ < n1P

0
1 + n2P

0
2 >=: E1.

P1 sends (E1, η(Q
0
1 ), η(Q

0
2 )).

P2 selects (m1,m2) ∈ (Z/sb)2 and the isogeny
ψ : E0 → E0/ < m1Q

0
1 +m2Q

0
2 >=: E2.

P2 sends (E2, ψ(P
0
1 ), ψ(P

0
2 )).



Definition of DH i

P1 computes
E3 := E2/ < n1ψ(P

0
1 ) + n2ψ(P

0
2 ) >

and thus obtains a path in G from E0 to E3.

P2 executes the analoguous computations.
A straightforward check shows: P1 and P2 get the same isomorphy
class E3 and can use the j-invariant of E3 as a key.
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A first glance concerning the security of the key leads again to
the isogeny problem between two curves isogenous to E0.
For this problem the state of the art is:The best known algorithms
have an exponential complexity p1/4 (bit computer) or p1/6

(quantum computer), and one could be satisfied (NIST round 4).
But to corrupt the key of P1 it would be enough to determine the
kernel of η.
From the beginning it was discussed whether the additional level
structures weaken the system.
The problem is: How can one use the information given about the
action of η on points of order m of E0?



In fact, during the Conference ANTS XV (2022) two very effective
attacks were published.
The first one was published by Wout Castryck and Thomas
Decru1 and resulted in a probabilistic subexponential algorithm
with very convincing numerical examples.
This work uses the special properties of supersingular curves and
their ring of endomorphisms.
Soon after this Damien Robert showed:

1L. Maino and Ch. Martindale are pursuing related ideas.



Theorem (Robert)

Assume that n < m are relatively prime numbers and ℓ the largest
prime number dividing m.
Let E0 and E be two known elliptic curves over a finite field Fq

with an (unknown) cyclic isogeny η : E0 → E of degree n.
Let (Q1,Q2) ∈ E0[m]2 be a fixed level-m-structure.
Assume that (η(Q1), η(Q2)) ∈ E (Fq)× E (Fq), the image of this
level-m-structure under η, is known.
Then there is a polynomial time algorithm in log(q) and ℓ, which
calculates the kernel of η.
Remark
No properties of supersingular curves or of quantum computers are
used in the proof of Robert’s theorem.
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Mathematical Background: Mumford’s Descent
Let A,B be two principally polarized abelian varieties (e.g. two
elliptic curves) over a field K , let n be prime to Char(K ) and let
η : A[n] → B[n] be a GK -isomorphism which is anti-isometric with
respect to the Weil pairing on A× B related to the product
polarization.
This yields that {(P, η(P));P ∈ A[n])} =: ∆n) is maximally
isotropic in (A× B)[n] .
The result of Mumford states that (A× B)/∆n is a principally
polarized abelian variety with respect to the quotient polarization.



Example
A = E ,B = E ′ elliptic curves.
Then (E × E ′)/∆n is a principally polarized abelian surface with
respect to the quotient polarization, i.e. Jacobian of a curve Cn of
genus 2 which is “usually” irreducible.
Remark
This construction was the beginning of a long series of papers of
F-Kani and Kani beginning 1991 and still not ending and
describing the arithmetic of Cn and corresponding Hurwitz spaces.

The aim was to get information about E by varying E ′.
For instance, the ABC-conjecure can be formulated as conjecture
about properties of families of curves C on diagonal surfaces.
For this, it was important to determine the instances for which the
curve Cn becomes reducible, i.e. isomorphic to two elliptic curves
intersecting in one point.
E. Kani succeeded to give an explicit characterization of these
special cases.
And exactly this characterization is the core of the two attacks I
shall sketch now.
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An (easly seen) necessary condition for reducibility is that there is
an isogeny η : A → B.
In his paper in Crelle 1997 (see also Coll. math. 2016) E. Kani
defines special configurations of subgroups of the kernel of η called
Diamonds and proves that these configurations correspond to
uniquely determined anti-isometries ι of degree n (intrinsically
given by the diamond) for which (A× ι(A)/{(P, ι(P);P ∈ A[n]} is
reducible.

The attacks of Castryck-Decru and of Robert create, in an
ingenious way, a constellation between abelian varieties (elliptic
curves for the Castryck-Decru attack and an eight-dimensional
(four-dimensional) product of elliptic curves for the Robert attack)
satisfying the conditions of the Diamond theorem of Kani, and
exploit this exceptional situation.
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The Castryck-Decru Attack
(Wouter Castryck and Thomas Decru: An efficient key
recovery attack on SIDH, COSIC, KU Leuven.
Let p = 2a3bf − 1 with c =: 2a − 3b > 0 .
Wanted: The kernel of a cyclic isogeny η : E0 → E of degree 3b

with known action on E0[2
a].

The easy case: Assume that 2a is not too big, so c can be
factorized.
Moreover, it is assumed that c is smooth and all prime divisors of
c are congruent to 1 mod 4.
We know both E and the level- 2a structure
(P1 = η(P0

1 ),P2 = η(P0
2 ) .

We can quickly compute (see the paper of Castryck-Decru) an
arbitrary cyclic isogeny γ : E0 → C
of degree c together with an level 2a-structure
(Pc

1 = γ(P0
1 ),P

c
2 = γ(P0

2 )).
Then there is a test such that probabilistically/heuristically only
(very) few cyclic isogenies φ of degree 3b pass, and among them is
one for which φ(P0

1 ) = P1 and φ(P0
2 ) = P2.
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The Test

Let x be the multiplicative inverse of 3b mod 2a and

ψ = [−1] ◦ φ ◦ γ:C → E .

Check:
If φ(P0

i ) = Pi then [x ] ◦ ψ|C [2a] is an anti-isometry of level
2a-structures.

ker(ψ) = H1 · H2

with uniquely determined cyclic subgroups H1 of order c and H2 of
order 3b and |H1|+ |H2| = 2a.
These are exactly the conditions of Kani for the triplet (ψ,H1,H2)
being a diamond!
Hence dividing out the graph of [x ] ◦ ψ|C [2a] in C × E yields a
reducible abelian surface, and this can be tested by computing a
chain of length a of (2, 2)-isogenies using (one time) gluing and
otherwise Richelot’s formulas.
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For the general case one shows that one can proceed inductively
and split the search for eta in steps fitting into the “easy case”.
This induction process is effective and yields subexponential
complexity.
For details, we refer to the article by Castryck-Decru.
We remark that for the construction of γ : E0 → C the knowledge
of the ring of endomorphisms of E0 and hence the supersingularity
is important.



The Proof of the Theorem of D. Robert

These complications are avoided by the approach of Robert. In the
most challenging part of his algorithm he can rely on results of
himself and D. Lubicz concerning the evaluation at arbitrary points
of isogenies of (moderately dimensioned) principally polarized
abelian varieties with kernels of not too large degree which are
maximally isotropic.

As result, he gets the polynomial complexity stated in the theorem
above.
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The Matrix of Robert
(cf. also work of E.Kani in Crelle 485 (1997), Collect. math. (2003), (2016)

Let η : E0 → E is a cyclic isogeny over a field K of degree n, and
m = n + c with c > 0.
Using (Lagrange, quaternions) that c is the sum of four squares
one finds a matrix M ∈ M4(Z) with Mt ·M = c · I4.
Define α1,1 by M operating on E 4

0 , α2,2 by Mt operating on E 4,
and
α2,1 = η4 ∈ Hom(E 4

0 ,E
4).

Let A = (E 4
0 )× (E 4) = A0 × B with the product principal

polarization.
Define α ∈ End(E 4

0 × E 4) by the 2× 2-“Matrix”

α =

(
α1,1 αt

2,1

−α2,1 αt
2,2

)
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Define “the dual” r(α) =

(
αt
1,1 −αt

2,1

α2,1 α2,2

)



Check: r(α) ◦ α = [m] · idA and
Ker(α) = r(α(E 4

0 [m]× {0}).
Conclusion Suppose that M and η|E0[m] are known. Then ker(α)
is known.

Take K = Fq. Check that ker(α) is isotropic. (This follows from
Prop.1.1 in Kani:Crelle 1997).
Then, Lubicz and Robert can compute α(P) in polynomial time at
every point P ∈ A(Fq).
Evaluate α at a base of 0× E 4[n] to get η̂(E [n]).
Since η is cyclic, Ker(η) = η̂(E [n]) and so one can compute the
kernel of η.
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Question:

How does one has the idea to use the matrix α?
Hint (given by Ernst Kani): The matrix can be viewed as a special
case of an isogeny factorization as defined in Crelle 1997 (p.100)



Let me end with the conclusion of Damien Robert in his paper:
Breaking the SIDH in polynomial time, ia.cr/2022/1038 (slightly
texified):
We have a new toolbox for recovering a cyclic isogeny η : A → B
of degree n given by its action on the m-torsion of A as long as
m ≥ n and m is sufficiently smooth.
This toolbox allows to break SIDH efficiently in all cases. Can it
also be used to build new isogeny based cryptosystems?

THANK YOU
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Kani’s Diamond (Crelle 1997, Coll. math. 2016)
We formulate this result only for pairs of isogenous elliptic curves
but is is clear how to generalize it to pairs of isogenous abelian
varieties.

Assume that E is isogenous to E ′ and there are subgroups H1,H2

in the kernel of the isogeny η : E → E ′ with H1 ∩ H2 = {0} and
|H1| · |H2| = deg η.
Define
N = |H1|+ |H2|,
n = N/gcd(|H1|, |H2|) and
ki = |Hi/gcd(|H1|, |H2|).
Factor η as η = η′ ◦ gcd(|H1|, |H2|) ◦ idE .
Then there is a uniquely determined reducible anti-isometry
ι : E [N] → E ′[N]
such that ι(k1R1 + k2R2) = η′(R2 − R1) for Ri ∈ [n]−1Hi .
Moreover: Any reducible anti-isometry E [N] → E ′[N] is of this
form.
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Castryck-Decru Induction Step

The attack splits up the search for the isogeny η : E0 → E between
two supersingular elliptic curves over Fp2 into steps with isogenies
of smaller degree.

Define β ≥ 1 minimal such that there exists α ≥ 0 with the
property
1)c = 2α − 3β ≥ 0 can be factorized, and all prime divisors are
congruent to 1 mod 4.
2) Let τ : E0 → E1 be a cyclic isogeny of degree 3β whose image
determines a level- 2α structure (P1,P2) .
3) Let C be an elliptic curve over Fp2 with cyclic isogeny
γ : E1 → C of degree c
such that we can compute the level- 2α structure
(Pc

1 = γ(P1),P
c
2 = γ(P2)).
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Then there is a test that probabilistically/heuristically only (very)
few cyclic isogenies φ of degree 3β pass the test, and among them
is one for which φ(P0

1 ) = P1 and φ(P0
2 ) = P2.


