Anonymity and unlinkability in ring signature-based discussion boards

Oriol Alàs, Francesc Sebé, Sergi Simón

Dept. Matemàtica Universitat de Lleida

Ring signatures Digital signature Group signature Alice

Some

group

member

Ring signature

Scenario

- Discussion board
 - Only registered users can post messages
 - Anonymous and unlinkable messages
- Group signatures attain these requirements
 - There exists a group manager who can lift anonymity of messages
- What about ring signatures?
 - Objective of our research

Forum operation

- Users enabled to post messages
 - Have a certified public key
- Posting a message
 - Write your message
 - Choose (K-1) forum members at random and take their public keys
 - Include your public key in that set
 - Compute the ring signature
 - Post the ring-signed message

• N_c : # Messages including C in its ring

 \equiv

С

F

Н

В

С

Ρ

V

• n_C : # Messages really authored by C

Message linkability

•
$$K_C = \frac{N_C}{n_C}$$

- Random variable
- Its distribution depends on the strategy to compose rings

Uniformly random choice of ring members

Uniformly random choice of ring members

- The number of times you are chosen to be part of a ring follows a binomial random model
 - $r_C \approx Bin\left(\widehat{N}; \frac{K-1}{\widehat{M}}\right)$
- It does not depend on your activity
 - Highly active forum members $(n_C \uparrow \uparrow)$ are less protected

•
$$K_C = \frac{N_C}{n_C} = \frac{n_C + r_C}{n_C}$$

• For
$$p[K_C \leq \varkappa] \leq e^{-\varepsilon} \rightarrow K = O\left(\frac{\varkappa n_C + \varepsilon}{\frac{\hat{N}}{\widehat{M}}}\right)$$

- Whatever the choice is
 - It will underprotect highly active members, or,
 - It will overprotect less active members

Preferential attachment strategy

Probability of being chosen

- Grows with the number of times you are in a ring
- Constant term (w_i) + Proportional term (w_m)
- Highly active members
 - Always belong to the ring of their messages

Simulation results ($w_i=3, w_m=10$)

K	User ₁	User₅	User ₁₀	User ₁₅
8	26.4	6.0	3.5	2.6
12	40.2	8.8	4.9	3.6
16	54.1	11.7	6.3	4.5

Privacy (
$$K_c = \frac{N_c}{n_c} = \frac{n_c + r_c}{n_c}$$
) using uniform strategy

Simulation results ($w_i=3, w_m=10$)

K	User ₁	User₅	User ₁₀	User ₁₅
8	26.4	6.0	3.5	2.6
12	40.2	8.8	4.9	3.6
16	54.1	11.7	6.3	4.5

Privacy ($K_c = \frac{N_c}{n_c} = \frac{n_c + r_c}{n_c}$) using <u>uniform</u> strategy

K	User ₁	User ₅	User ₁₀	User ₁₅
8	20.7	6.3	4.8	4.4
12	33.3	9.6	6.7	6.0
16	50.1	13.6	8.7	6.5

Privacy ($K_C = \frac{N_C}{n_C} = \frac{n_C + r_C}{n_C}$) using preferential attachment strategy

Anonymity and unlinkability in ring signature-based discussion boards

Oriol Alàs, Francesc Sebé, Sergi Simón

Dept. Matemàtica Universitat de Lleida