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Notation

We will to consider from now on...

a finite field K of order q = pm where p is prime,

a linear code C over K with length n and dimension k,

the minimal distance d and the correcting capability t of C,

a codeword c ∈ C affected by e ∈ Kn of weight w,

the received word r = c+ e,

a finite group G = {g1 = 1G, . . . , gn} of order n,

and the group algebra KG whose elements are K−linear
combinations

x =
n∑

i=1

αigi

where αi ∈ K for all i = 1, . . . , n.
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Group Codes

From now on...

we fix the order of the elements of G and we take B = G the K−basis
of KG.

Hence, the elements of Kn can be written as elements of the group
algebra KG and C can be seen as a vector K−subspace of KG.

Definition

It is said that C is a G−code over K, if C is a (two-sided) ideal of KG. That
is,

xCy = C ∀x, y ∈ KG.

In this case, C is called group code.
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Semisimple Group Algebras

From now on, we consider G and K such that the group algebra KG is
semisimple. That is, q does not divide to n.

This is equivalent to
KG = 〈e1〉 ⊕ · · · ⊕ 〈es〉

where 〈ei〉 is a minimal ideal generated by a primitive central idempotent
ei, for all i ∈ {1, . . . , s}.

The ideals 〈ei〉, for all i ∈ {1, . . . , s}, are called the simple components
of KG.

Every two-sided ideal of KG is generated by a central idempotent e0 and
is a direct sum of some simple components of KG.
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Syndrome Decoding

We will assume that e0 is sum of some e′is and C = 〈e0〉.

Also, we consider C+ = 〈e+0 〉 where e+0 = 1− e0.

Hence, c ∈ KG is a codeword, if and only if, ce+0 = 0.

The syndrome of r is defined as S(r) = re+0 and therefore,

S(r) = (c+ e)e+0 = ee+0 .

Decoding by minimal distance is equivalent to find the solution e ∈ KG of
the key equation Xe+0 = S(r) and whose weight w ≤ t.

Theorem 1.

Let C be a group code that corrects up to t errors and r a received word
with syndrome S(r) = re+0 . If there exists one element that of weight w ≤ t
and that is a solution of the key equation Xe+0 = S(r), then it is unique.
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Syndrome Decoding

Previously decoding, we compute gie+0 , i = 1, . . . , n and define the
column vector Cgi of its coefficients.

Theorem 2.

Suppose that C is a G−code with minimal distance d. If b < d and
gi1 , . . . , gib are distinct elements of G, then

C(gi1 , . . . , gib) =
(
Cgi1

. . . Cgib

)
∈Mn×b(K),

has rank b.

Once the word r is received, we compute S = S(r) and consider the
column vector ST of its coefficients.

The goal is to find e = α1gi1 + · · ·+ αqgiw of weight w ≤ t such that
ee+0 = S(r).
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Elementary Facts

There are no errors (e = 0), if and only if, S(r) = 0.

If the number of errors is w ≤ t, then e = α1gi1 + · · ·+ αtgit is the
unique solution of Xe+0 = S(r), satisfying this property.

The above occurs, if and only if,

X1Cgi1
+ · · ·+XtCgit

= ST ,

has unique solution Xi = αi, i = 1, . . . , t.

This is equivalent to the matrices C(gi1 , . . . , git) y

M(gi1 , . . . , git) =
(
Cgi1

. . . Cgit
ST

)
,

have both rank t.
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Syndrome Decoding Algorithm

Step 1.

Compute the syndrome S(r) of r. If S(r) = 0, then there are no errors.
Otherwise, continue to

Step 2.

Take a t−set {gi1 , . . . , git} of G. Consider the matrixM(gi1 , . . . , git) and
compute its rank.

a. If the rank is equal to t, then solve the system

X1Cgi1
+ · · ·+XtCgit

= ST .

If αj1 , . . . , αjw 6= 0, then the error is e = αj1gij1 + · · ·+ αjwgijw .

b. Otherwise, take another t−set of G and repeat step 2.
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Syndrome Decoding Algorithm

The algorithm ends when a t−set {gi1 , . . . , git} of G is found such that

Rank(M(gi1 , . . . , git)) = t (P1)

or when all t−sets of G have been evaluated and none satisfies (P1). In
the last case, the algorithm concludes that more than t errors have occurred
and r cannot be decoded.

The algorithm searches for t−sets of G satisfying (P1). Thus,

If w = t, the t−set that satisfies (P1) is unique.

If w < t, all t−sets that satisfy (P1), allow to find the same error e.

If w > t, no one t−set satisfies (P1).
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Meggit’s Generalization

Group codes naturally generalize to cyclic codes.

Then, some decoding algorithms in cyclic codes can be generalized to
group codes.

Note that, gee+0 = gS(r) for all g ∈ G.

Chosen a specific position gi0 ∈ G, for any r ∈ KG we have r = g′r′ for
some g′ ∈ G and r′ ∈ KG such that gi0 ∈ supp(r′).

Therefore, we can consider the set T of elements (called class leaders)
of KG having weight ≤ t and whose support contains gi0 ∈ G.

Previously to decoding, we make a list L of the syndrome of each class
leader. This is called syndrome reduced list.
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Meggit’s Algorithm Generalization

Step 1.

Compute the syndrome S(r) of r. If S(r) = 0, then there are no errors.
Otherwise, continue to

Step 2.

Take g ∈ G and compute Sg(r) = gS(r).

a. If Sg(r) is syndrome of some class leader e′ ∈ T in L, then the error is
e = g−1e′ and the algorithm ends.

b. Otherwise, the element g is discarded and another element of G is
considered and Step 2 is repeated with it.
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Meggit’s Algorithm Generalization

The algorithm ends when a element g satisfying (P2):

Sg(r) is syndrome is in L for some element of T ,

what it allows us to find the error or when all elements of G have been
checked and none satisfies property (P2). In the last case, the algorithm
concludes that more than t errors have occurred and r cannot be decoded.

This algorithm is highly recommended for binary group codes because the
complexity order of the decoding algorithms presented are

Algorithm Precalculations Decoding

Syndrome O(n2) O
(
n3 ×

(
n
t

))
Meggitt’s Generalization in F2 O

(
nt×

(
n−1
t−1

))
O(n3)
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Thank you, so much!
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