Two Decoding Algorithms in Group Codes

Fabián Ricardo Molina Gómez - Consuelo Martínez López Universidad de Oviedo

RECSI 2022, Universidad de Cantabria

Octubre 19, 2022

Notation

We will to consider from now on...

- a finite field \mathbb{K} of order $q = p^m$ where p is prime,
- a linear code \mathfrak{C} over \mathbb{K} with length n and dimension k,
- the minimal distance d and the correcting capability t of \mathfrak{C} ,
- a codeword $\mathfrak{c} \in \mathfrak{C}$ affected by $\mathfrak{e} \in \mathbb{K}^n$ of weight w,
- the received word $\mathfrak{r}=\mathfrak{c}+\mathfrak{e},$
- a finite group $G = \{g_1 = 1_G, \dots, g_n\}$ of order n,

• and the group algebra $\mathbb{K} G$ whose elements are $\mathbb{K}-\text{linear}$ combinations

$$x = \sum_{i=1}^{n} \alpha_i g_i$$

where $\alpha_i \in \mathbb{K}$ for all $i = 1, \ldots, n$.

Notation

We will to consider from now on...

- a finite field \mathbb{K} of order $q = p^m$ where p is prime,
- a linear code \mathfrak{C} over \mathbb{K} with length n and dimension k,
- the minimal distance d and the correcting capability t of \mathfrak{C} ,
- a codeword $\mathfrak{c} \in \mathfrak{C}$ affected by $\mathfrak{e} \in \mathbb{K}^n$ of weight w,
- the received word $\mathfrak{r}=\mathfrak{c}+\mathfrak{e},$
- a finite group $G = \{g_1 = 1_G, \dots, g_n\}$ of order n,
- and the group algebra KG whose elements are K−linear combinations

$$x = \sum_{i=1}^{n} \alpha_i g_i$$

where $\alpha_i \in \mathbb{K}$ for all $i = 1, \ldots, n$.

From now on...

- we fix the order of the elements of G and we take 𝔅 = G the 𝔅−basis of 𝔅G.
- Hence, the elements of Kⁿ can be written as elements of the group algebra KG and ℭ can be seen as a vector K−subspace of KG.

Definition

It is said that \mathfrak{C} is a G-code over \mathbb{K} , if \mathfrak{C} is a (two-sided) ideal of $\mathbb{K}G$. That is,

 $x \mathfrak{C} y = \mathfrak{C} \qquad \forall x, y \in \mathbb{K} G.$

In this case, C is called group code.

From now on...

- we fix the order of the elements of G and we take 𝔅 = G the 𝔅−basis of 𝔅G.
- Hence, the elements of Kⁿ can be written as elements of the group algebra KG and € can be seen as a vector K−subspace of KG.

Definition

It is said that \mathfrak{C} is a G-code over \mathbb{K} , if \mathfrak{C} is a (two-sided) ideal of $\mathbb{K}G$. That is,

 $x\mathfrak{C} y = \mathfrak{C} \qquad \quad \forall x, y \in \mathbb{K} G.$

In this case, \mathfrak{C} is called *group code*.

- From now on, we consider G and K such that the group algebra KG is semisimple. That is, q does not divide to n.
- This is equivalent to

$$\mathbb{K}G = \langle e_1 \rangle \oplus \cdots \oplus \langle e_s \rangle$$

where $\langle e_i \rangle$ is a minimal ideal generated by a primitive central idempotent e_i , for all $i \in \{1, \dots, s\}$.

- The ideals ⟨e_i⟩, for all i ∈ {1,...,s}, are called the simple components of KG.
- Every two-sided ideal of KG is generated by a central idempotent e_0 and is a direct sum of some simple components of KG.

- We will assume that e_0 is sum of some $e'_i s$ and $\mathfrak{C} = \langle e_0 \rangle$.
- Also, we consider $\mathfrak{C}^+ = \langle e_0^+ \rangle$ where $e_0^+ = 1 e_0$.
- Hence, $\mathfrak{c} \in \mathbb{K}G$ is a codeword, if and only if, $\mathfrak{c}e_0^+ = 0$.
- The syndrome of \mathfrak{r} is defined as $S(\mathfrak{r}) = \mathfrak{r}e_0^+$ and therefore,

$$S(\mathfrak{r}) = (\mathfrak{c} + \mathfrak{e})e_0^+ = \mathfrak{e}e_0^+.$$

 Decoding by minimal distance is equivalent to find the solution e ∈ KG of the key equation Xe₀⁺ = S(t) and whose weight w ≤ t.

Theorem 1.

Let \mathfrak{C} be a group code that corrects up to t errors and \mathfrak{r} a received word with syndrome $S(\mathfrak{r}) = \mathfrak{r}e_0^+$. If there exists one element that of weight $w \leq t$ and that is a solution of the key equation $Xe_0^+ = S(\mathfrak{r})$, then it is unique.

イロト イ団ト イヨト イヨ

• Previously decoding, we compute $g_i e_0^+$, i = 1, ..., n and define the column vector C_{g_i} of its coefficients.

Theorem 2.

Suppose that \mathfrak{C} is a *G*-code with minimal distance *d*. If b < d and g_{i_1}, \ldots, g_{i_b} are distinct elements of *G*, then

$$\mathcal{C}(g_{i_1},\ldots,g_{i_b}) = \begin{pmatrix} C_{g_{i_1}} & \ldots & C_{g_{i_b}} \end{pmatrix} \in M_{n \times b}(\mathbb{K}),$$

has rank b.

- Once the word r is received, we compute S = S(r) and consider the column vector S^T of its coefficients.
- The goal is to find $\mathfrak{e} = \alpha_1 g_{i_1} + \cdots + \alpha_q g_{i_w}$ of weight $w \leq t$ such that $\mathfrak{e} e_0^+ = S(\mathfrak{r})$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- There are no errors ($\mathfrak{e} = 0$), if and only if, $S(\mathfrak{r}) = 0$.
- If the number of errors is $w \le t$, then $\mathfrak{e} = \alpha_1 g_{i_1} + \cdots + \alpha_t g_{i_t}$ is the unique solution of $Xe_0^+ = S(\mathfrak{r})$, satisfying this property.
- The above occurs, if and only if,

$$X_1 C_{g_{i_1}} + \dots + X_t C_{g_{i_t}} = S^T,$$

has unique solution $X_i = \alpha_i, i = 1, \ldots, t$.

• This is equivalent to the matrices $\mathcal{C}(g_{i_1},\ldots,g_{i_t})$ y

$$\mathcal{M}(g_{i_1},\ldots,g_{i_t}) = \left(\begin{array}{ccc} C_{g_{i_1}} & \ldots & C_{g_{i_t}} \end{array} \middle| S^T \right),$$

< 回 > < 三 > < 三 >

have both rank t.

Step 1.

Compute the syndrome $S(\mathfrak{r})$ of \mathfrak{r} . If $S(\mathfrak{r}) = 0$, then there are no errors. Otherwise, continue to

Step 2.

Take a t-set $\{g_{i_1}, \ldots, g_{i_t}\}$ of G. Consider the matrix $\mathcal{M}(g_{i_1}, \ldots, g_{i_t})$ and compute its rank.

a. If the rank is equal to t, then solve the system

$$X_1 C_{g_{i_1}} + \dots + X_t C_{g_{i_t}} = S^T.$$

< 口 > < 同 > < 回 > < 回 > .

If $\alpha_{j_1}, \ldots, \alpha_{j_w} \neq 0$, then the error is $\mathfrak{e} = \alpha_{j_1} g_{i_{j_1}} + \cdots + \alpha_{j_w} g_{i_{j_w}}$.

b. Otherwise, take another t-set of G and repeat step 2.

The algorithm ends when a t-set $\{g_{i_1}, \ldots, g_{i_t}\}$ of G is found such that

$$\mathsf{Rank}(\mathcal{M}(g_{i_1},\ldots,g_{i_t})) = t \tag{P1}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

or when all *t*-sets of *G* have been evaluated and none satisfies (P1). In the last case, the algorithm concludes that more than *t* errors have occurred and r cannot be decoded.

The algorithm searches for t-sets of G satisfying (P1). Thus,

- If w = t, the t-set that satisfies (P1) is unique.
- If w < t, all t-sets that satisfy (P1), allow to find the same error c.
- If w > t, no one t-set satisfies (P1).

The algorithm ends when a t-set $\{g_{i_1}, \ldots, g_{i_t}\}$ of G is found such that

$$\mathsf{Rank}(\mathcal{M}(g_{i_1},\ldots,g_{i_t})) = t \tag{P1}$$

A (10) A (10) A (10)

or when all *t*-sets of *G* have been evaluated and none satisfies (P1). In the last case, the algorithm concludes that more than *t* errors have occurred and r cannot be decoded.

The algorithm searches for t-sets of G satisfying (P1). Thus,

- If w = t, the *t*-set that satisfies (P1) is unique.
- If w < t, all t-sets that satisfy (P1), allow to find the same error \mathfrak{e} .
- If w > t, no one t-set satisfies (P1).

- Group codes naturally generalize to cyclic codes.
- Then, some decoding algorithms in cyclic codes can be generalized to group codes.
- Note that, $g\mathfrak{e}e_0^+ = gS(\mathfrak{r})$ for all $g \in G$.
- Chosen a specific position $g_{i_0} \in G$, for any $\mathfrak{r} \in \mathbb{K}G$ we have $\mathfrak{r} = g'\mathfrak{r}'$ for some $g' \in G$ and $\mathfrak{r}' \in \mathbb{K}G$ such that $g_{i_0} \in \text{supp}(\mathfrak{r}')$.
- Therefore, we can consider the set T of elements (called *class leaders*) of KG having weight ≤ t and whose support contains g_{i0} ∈ G.
- Previously to decoding, we make a list \mathcal{L} of the syndrome of each class leader. This is called *syndrome reduced list*.

< □ > < 同 > < 回 > < 回

Step 1.

Compute the syndrome $S(\mathfrak{r})$ of \mathfrak{r} . If $S(\mathfrak{r}) = 0$, then there are no errors. Otherwise, continue to

Step 2.

Take $g \in G$ and compute $S_g(\mathfrak{r}) = gS(\mathfrak{r})$.

a. If $S_g(\mathfrak{r})$ is syndrome of some class leader $\mathfrak{e}' \in \mathcal{T}$ in \mathcal{L} , then the error is $\mathfrak{e} = g^{-1}\mathfrak{e}'$ and the algorithm ends.

b. Otherwise, the element g is discarded and another element of G is considered and Step 2 is repeated with it.

The algorithm ends when a element g satisfying (P2):

 $S_g(\mathfrak{r})$ is syndrome is in \mathcal{L} for some element of \mathcal{T} ,

what it allows us to find the error or when all elements of G have been checked and none satisfies property (P2). In the last case, the algorithm concludes that more than t errors have occurred and r cannot be decoded.

This algorithm is highly recommended for binary group codes because the complexity order of the decoding algorithms presented are

The algorithm ends when a element g satisfying (P2):

 $S_g(\mathfrak{r})$ is syndrome is in \mathcal{L} for some element of \mathcal{T} ,

what it allows us to find the error or when all elements of G have been checked and none satisfies property (P2). In the last case, the algorithm concludes that more than t errors have occurred and r cannot be decoded.

This algorithm is highly recommended for binary group codes because the complexity order of the decoding algorithms presented are

Algorithm	Precalculations	Decoding
Syndrome	$\mathcal{O}(n^2)$	$\mathcal{O}\left(n^3 \times \binom{n}{t}\right)$
Meggitt's Generalization in \mathbb{F}_2	$\mathcal{O}\left(nt \times \binom{n-1}{t-1}\right)$	$\mathcal{O}(n^3)$

Thank you, so much!