
Analysis and Improvements of the Sender Keys

Protocol for Group Messaging

David Balbás1, Daniel Collins2, Phillip Gajland3

1IMDEA Software Institute, Madrid, Spain
2EPFL, Lausanne, Switzerland
3RUB & MPI-SP, Bochum, Germany

October 21, 2022

RECSI 2022, Santander

1

WhatsUpp with Sender Keys?

• Messaging protocols used by billions daily.

Commercial solutions claim security + end-to-end encryption.

• Formal protocol analysis is important. Becomes harder in groups.

• Signal: Extends Double Ratchet. Slow; not completely understood.

• Telegram: No end-to-end encryption. Not ideal.

• MLS: Lots of theoretical analysis. Secure and efficient but complex.

• WhatsApp: Sender Keys. No protocol analysis so far.

2

WhatsUpp with Sender Keys?

• Messaging protocols used by billions daily.

Commercial solutions claim security + end-to-end encryption.

• Formal protocol analysis is important. Becomes harder in groups.

• Signal: Extends Double Ratchet. Slow; not completely understood.

• Telegram: No end-to-end encryption. Not ideal.

• MLS: Lots of theoretical analysis. Secure and efficient but complex.

• WhatsApp: Sender Keys. No protocol analysis so far.

2

Our Contributions

We study the Sender Keys Protocol used in WhatsApp groups.

Protocol extracted from WhatsApp’s whitepaper + Signal code.

• Formalization: Cryptographic primitive, security modelling.

• Security Analysis: Issues with concurrency, group membership,

recovery from compromise, authentication...

• Improvements: Patching our attacks, key updates, securing

membership.

Results are preliminary.

3

Our Contributions

We study the Sender Keys Protocol used in WhatsApp groups.

Protocol extracted from WhatsApp’s whitepaper + Signal code.

• Formalization: Cryptographic primitive, security modelling.

• Security Analysis: Issues with concurrency, group membership,

recovery from compromise, authentication...

• Improvements: Patching our attacks, key updates, securing

membership.

Results are preliminary.

3

Our Contributions

We study the Sender Keys Protocol used in WhatsApp groups.

Protocol extracted from WhatsApp’s whitepaper + Signal code.

• Formalization: Cryptographic primitive, security modelling.

• Security Analysis: Issues with concurrency, group membership,

recovery from compromise, authentication...

• Improvements: Patching our attacks, key updates, securing

membership.

Results are preliminary.

3

Messaging and Sender Keys

Sender Keys: Main Protocol

• Every ID ∈ G owns a symmetric chain key ckID shared with all

members.

• Sending: ID encrypts m using a message key mk that is

deterministically derived from ckID.

• Receiving, members derive mk from ckID to decrypt and read m.

• Forward security provided by a fresh mk every time – symmetric

ratchet using hash functions.

• Additionally, senders sign application messages.

4

Sender Keys: Main Protocol

• Every ID ∈ G owns a symmetric chain key ckID shared with all

members.

• Sending: ID encrypts m using a message key mk that is

deterministically derived from ckID.

• Receiving, members derive mk from ckID to decrypt and read m.

• Forward security provided by a fresh mk every time – symmetric

ratchet using hash functions.

• Additionally, senders sign application messages.

4

What is expected from Sender Keys?

• Correctness, authentication.

• Forward Security (FS) - past messages safe.

• Post-Compromise Security (PCS) - self-healing

• Sender Keys does not aim for strong PCS in groups.

• Secure Membership, namely new users must not read previous

messages and old users must not continue reading.

5

What is expected from Sender Keys?

• Correctness, authentication.

• Forward Security (FS) - past messages safe.

• Post-Compromise Security (PCS) - self-healing

• Sender Keys does not aim for strong PCS in groups.

• Secure Membership, namely new users must not read previous

messages and old users must not continue reading.

5

Sender Keys: Message Exchange

6

Sender Keys: Message Exchange

7

Sender Keys: Key Agreement & Membership

Sender Keys relies on existing authenticated and confidential two-party

channels (2pc) between all users (strong assumption!).

• If ID joins G , it generates new ck and spk and sends it to everyone

in G via 2pc. This is done the first time ID speaks.

• If ID leaves, everyone deletes keys, generates fresh ones and

restarts the protocol using 2pc. O
(
n2
)
total communication.

8

Sender Keys: Key Agreement & Membership

Sender Keys relies on existing authenticated and confidential two-party

channels (2pc) between all users (strong assumption!).

• If ID joins G , it generates new ck and spk and sends it to everyone

in G via 2pc. This is done the first time ID speaks.

• If ID leaves, everyone deletes keys, generates fresh ones and

restarts the protocol using 2pc. O
(
n2
)
total communication.

8

Security

Primitive and Security Model

A Group Messenger (GM) includes:

• (C , γ′) $← Send(m, γ)

• (m, e, i , γ′)← Recv(C , γ)

• (T , γ′) $← Exec(cmd, IDs, γ)

• γ′ ← Proc(T , γ)

We introduce a message

indistinguishability security game.

Active, adaptive A that can forge

and inject messages.

We disallow ’trivial attacks’:

challenge and inject using exposed

keys.

Game Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID, ID′,C)

• Add(ID, ID′)

• Remove(ID, ID′)

• Update(ID)

• Deliver(ID,T)

• Expose(ID)

• ExpMK(ID, e, i)

• Send2PC(ID, ID’)

• Receive2PC(ID, ID’, e, i)

9

Primitive and Security Model

A Group Messenger (GM) includes:

• (C , γ′) $← Send(m, γ)

• (m, e, i , γ′)← Recv(C , γ)

• (T , γ′) $← Exec(cmd, IDs, γ)

• γ′ ← Proc(T , γ)

We introduce a message

indistinguishability security game.

Active, adaptive A that can forge

and inject messages.

We disallow ’trivial attacks’:

challenge and inject using exposed

keys.

Game Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID, ID′,C)

• Add(ID, ID′)

• Remove(ID, ID′)

• Update(ID)

• Deliver(ID,T)

• Expose(ID)

• ExpMK(ID, e, i)

• Send2PC(ID, ID’)

• Receive2PC(ID, ID’, e, i)

9

Primitive and Security Model

A Group Messenger (GM) includes:

• (C , γ′) $← Send(m, γ)

• (m, e, i , γ′)← Recv(C , γ)

• (T , γ′) $← Exec(cmd, IDs, γ)

• γ′ ← Proc(T , γ)

We introduce a message

indistinguishability security game.

Active, adaptive A that can forge

and inject messages.

We disallow ’trivial attacks’:

challenge and inject using exposed

keys.

Game Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID, ID′,C)

• Add(ID, ID′)

• Remove(ID, ID′)

• Update(ID)

• Deliver(ID,T)

• Expose(ID)

• ExpMK(ID, e, i)

• Send2PC(ID, ID’)

• Receive2PC(ID, ID’, e, i)

9

Primitive and Security Model

A Group Messenger (GM) includes:

• (C , γ′) $← Send(m, γ)

• (m, e, i , γ′)← Recv(C , γ)

• (T , γ′) $← Exec(cmd, IDs, γ)

• γ′ ← Proc(T , γ)

We introduce a message

indistinguishability security game.

Active, adaptive A that can forge

and inject messages.

We disallow ’trivial attacks’:

challenge and inject using exposed

keys.

Game Oracles:

• Create(ID, IDs)

• Challenge(ID,m0,m1)

• Send(ID,m)

• Receive(ID, ID′,C)

• Add(ID, ID′)

• Remove(ID, ID′)

• Update(ID)

• Deliver(ID,T)

• Expose(ID)

• ExpMK(ID, e, i)

• Send2PC(ID, ID’)

• Receive2PC(ID, ID’, e, i)

9

Two Attacks

Assuming ideal two-party channels, we still find some issues:

Control Messages

These are not authenticated and can be forged without any exposure.

Server can add/remove parties on behalf of other users. Insecure

membership [RMS18, ACDJ22, BCV22].

Sub-Optimal Forward Security

It is possible to inject messages using (signature) keys from before a state

exposure occurs.

Can be mitigated with MACs / refreshing signature keys.

10

Two Attacks

Assuming ideal two-party channels, we still find some issues:

Control Messages

These are not authenticated and can be forged without any exposure.

Server can add/remove parties on behalf of other users. Insecure

membership [RMS18, ACDJ22, BCV22].

Sub-Optimal Forward Security

It is possible to inject messages using (signature) keys from before a state

exposure occurs.

Can be mitigated with MACs / refreshing signature keys.

10

An Improvement: PCS Updates

Only ’removes’ allow for PCS in Sender Keys. Can we do updates?

• Naive approach: ID sends a fresh ck to all users [CHK21]. Problem:

only messages encrypted under ck recover security.

• Alternative idea: ID sends fresh randomness r to all users;

ckID′ ← H(ckID′ ||r) is computed for all ID′s.

We improve removals from O(n2) to O(n) communication.

11

An Improvement: PCS Updates

Only ’removes’ allow for PCS in Sender Keys. Can we do updates?

• Naive approach: ID sends a fresh ck to all users [CHK21]. Problem:

only messages encrypted under ck recover security.

• Alternative idea: ID sends fresh randomness r to all users;

ckID′ ← H(ckID′ ||r) is computed for all ID′s.

We improve removals from O(n2) to O(n) communication.

11

An Improvement: PCS Updates

Only ’removes’ allow for PCS in Sender Keys. Can we do updates?

• Naive approach: ID sends a fresh ck to all users [CHK21]. Problem:

only messages encrypted under ck recover security.

• Alternative idea: ID sends fresh randomness r to all users;

ckID′ ← H(ckID′ ||r) is computed for all ID′s.

We improve removals from O(n2) to O(n) communication.

11

An Improvement: PCS Updates

Only ’removes’ allow for PCS in Sender Keys. Can we do updates?

• Naive approach: ID sends a fresh ck to all users [CHK21]. Problem:

only messages encrypted under ck recover security.

• Alternative idea: ID sends fresh randomness r to all users;

ckID′ ← H(ckID′ ||r) is computed for all ID′s.

We improve removals from O(n2) to O(n) communication.

11

Realistic two-party Channels

If ID is removed, assuming secure 2pc:

• Members process removal & erase keys - free from every exposure!

• Generate and send fresh keys over secure 2pc.

Looks great! Keys sent safely, key material erased, exposures resolved.

PCS is achieved.

In reality, New keys sent encrypted... under Double ratchet keys! DR

sessions are not 100% safe.

Fine-grained modelling leads to more attacks.

12

Realistic two-party Channels

If ID is removed, assuming secure 2pc:

• Members process removal & erase keys - free from every exposure!

• Generate and send fresh keys over secure 2pc.

Looks great! Keys sent safely, key material erased, exposures resolved.

PCS is achieved.

In reality, New keys sent encrypted... under Double ratchet keys! DR

sessions are not 100% safe.

Fine-grained modelling leads to more attacks.

12

Realistic two-party Channels

If ID is removed, assuming secure 2pc:

• Members process removal & erase keys - free from every exposure!

• Generate and send fresh keys over secure 2pc.

Looks great! Keys sent safely, key material erased, exposures resolved.

PCS is achieved.

In reality, New keys sent encrypted... under Double ratchet keys! DR

sessions are not 100% safe.

Fine-grained modelling leads to more attacks.

12

Final Remarks

Conclusions and Future Work

Takeaways:

• Analysis: Formalization,

weaknesses, comparison to other

protocols, concurrency.

• Improvements: Update options

(even if strong PCS impossible),

efficiency, security.

Work in progress:

Complete analysis with realistic

two-party channels, further

improvements.

13

Conclusions and Future Work

Takeaways:

• Analysis: Formalization,

weaknesses, comparison to other

protocols, concurrency.

• Improvements: Update options

(even if strong PCS impossible),

efficiency, security.

Work in progress:

Complete analysis with realistic

two-party channels, further

improvements.

13

Conclusions and Future Work

Takeaways:

• Analysis: Formalization,

weaknesses, comparison to other

protocols, concurrency.

• Improvements: Update options

(even if strong PCS impossible),

efficiency, security.

Work in progress:

Complete analysis with realistic

two-party channels, further

improvements.

So, WhatsUpp with

Sender Keys?

¡Gracias!

Slides (and more!) at:

davidbalbas.github.io

14

davidbalbas.github.io

Appendix: Single- vs multi-key

Each ID has a different ck, so the state has O(n) secret material at all

times. We observe:

• Security comparable if all users have the same chain key (single-key

group). Everyone knows all secret material except signature keys.

• Different chain keys are essentially useful for concurrency.

• One could envision trade-offs depending on how active users are. A

central server could be employed to help.

For example, in MLS a common group secret is agreed (with possible PCS).

Then, O(n) application keys are derived from it to improve concurrency.

15

PCS after users leave

In the Double Ratchet, we require a full roundtrip for state exposure

recovery (hence for PCS).

16

An attack vector

1. ID is exposed. Then A knows its DR keys with everyone.

2. Someone leaves the group. Users erase their old keys.

3. ID′ sends a new sender key to ID via their DR.

4. A can read the key despite ID’s updated pk.

This raises open questions:

• Can we improve this mechanism?

• Do we need a fresh, interactive key exchange?

• Can PCS be recovered at all (just by sending keys)?

• What is the exact security we get?

Current approach: simplified modelling of underlying channels

17

Security in ideal model

We disallow ‘trivial attacks’ when party ID is exposed:

• Cannot inject (via Receive) previous messages and future until ID is

removed;

• Cannot Challenge using keys learnt from ID until removal of

ID′/update.

• Game only delivers honestly generated control messages.

Then, we can prove security assuming ideal 2pc. Some remarks:

• Message keys mki can be exposed independently, never affecting other

keys.

• Assuming perfect 2pc, users recover from exposure after a removal.

18

	Messaging and Sender Keys
	Security
	Final Remarks

