A Comparison of Layer 2 Techniques for Scaling Blockchains

Adrià Torralba-Agell^{1, 2} atorralbaag@uoc.edu Cristina Pérez-Solà^{1, 2} cperezsola@uoc.edu

¹Universitat Oberta de Catalunya - KISON Research Group

²Cybercat - Center for Cybersecurity Research of Catalonia

October 19, 2022

Introduction

- 2 Scalability Problem in Blockchain
- Scalability solutions
- 4 Comparison
- 5 Conclusion and Future Work

2 Scalability Problem in Blockchain

3 Scalability solutions

4 Comparison

- Introduce the blockchain scalability problem
- Introduce existing scalability solutions
- Show major differences among them

Introduction

2 Scalability Problem in Blockchain

- Why is this happening?
- Blockchain Trilemma
- Performance Metrics

3 Scalability solutions

4 Comparison

Conclusion and Future Work

Why is this happening?

- Rise in **popularity** of **blockchain** techlonology
 - dApps
 - DeFi
 - NFTs
 - Blockchain games
 - etc.
- Heavy congestion
 - Poor performance
 - High transaction fees

Blockchain Trilemma

- 3 desirables properties
 - Scalability
 - Security
 - Decentralization
- Vitalik Buterin (and other authors) claim that all 3 are incompatible at the same time
 - Blockchain Trilemma

Figure: Diagram of the Blockchain Trilemma

Performance Metrics

- Transaction throughput (Transactions per Second, TPS)
- Latency

- Bootstrap time
- Cost per **confirmed transaction**, in terms of computation, network and storage resources
- Cost to **maintain a full node** also in terms of computation, network and storage

Introduction

2 Scalability Problem in Blockchain

Scalability solutions

- Layer 1 scaling
- Layer 2 scaling

Comparison

Layer 1 scaling (aka on-chain solutions)

Focused on improvements in

- Consensus algorithm
- Network
- Data Structure of the Blockchain

For instance

- Changes to the size of the block
- Implement techniques to split the work of building a block across many participants (sharding)

Layer 2 scaling (aka off-chain solutions)

- Withdraw computation from the *main network* (Layer 1) and **perform this work** off-chain (Layer 2)
- We consider here three different approaches
 - Payment Channel Networks
 - Sidechains
 - Rollups

Payment Channel Networks

- A **Peer-to-Peer** network on top of the main blockchain
- Can perform **many transactions** without the **restrictions** imposed by the main network
- Come with the **cost** of security and reliability
- Examples
 - Lightning Network for Bitcoin Blockchain
 - Raiden Network for Ethereum Blockchain

Adrià Torralba-Agell & Cristina Pérez-Solà

Sidechains

- A whole new blockchain in parallel of the main blockchain
- Tokens can **flow** between main network and sidechain
- Have to deal with
 - Consensus mechanism
 - Tokens
 - Security

Rollups

- Group a batch of transactions, "roll-up" them and publish to Blockchain, providing a proof for its correctness
- There are **two main flavours** for this technique
 - zkRollups based on validity proofs
 - Optimistic Rollups based on fraud proofs

Introduction

2 Scalability Problem in Blockchain

3 Scalability solutions

4 Comparison

- Considered technologies
- Usability
- Security
- Cost

Considered technologies

- Payment Channels
 - Lightning Network
 - Raiden Network
- Rollups
 - Zero-Knowledge Rollups
 - ★ zkSync
 - * Loopring
 - ★ StarkNet
 - Optimistic Rollups
 - * Arbitrum
 - * Optimism

Usability

			Usability	
Scalability solution type	Technology name	General-purpose script /	Supported	Nativo propriotary tokon?
		Turing Complete Machine	tokens	Nutive proprietary token.
Payment Channels	Lightning Network	No	Bitcoin (BTC)	No
	Raiden Network	Yes, native	ERC20	Yes,
				Raiden Network Token (RDN)
Zero-Knowledge Rollups	zkSync	Yes, in Zinc	ERC20, Ether (ETH)	No
	Loopring 3.8	No	ERC20, Ether (ETH)	Yes, Loopring (LRC)
	Starknet	Yes, implemented	ERC20, Ether (ETH)	No
		using Cairo	ERC721	
Optimistic Rollups	Arbitrum	Yes, through ArbOS	ERC20, ERC721	No
		(EVM compatible)		
	Optimism	Yes, supports	ERC20 ERC721	Yes, Optimism (OP)
		Solidity and Vyper	ENCZU, ENCIZI	

Security

		Security		
Scalability solution type	Technology name	Security model	Cryptographic primitives Type of networ	
Payment Channels	Lightning Network	Inherited from L1 + censorship-resistant within time t + node always online	Hash functions, digital signature	Peer-to-Peer
	Raiden Network	Inherited from L1 + censorship-resistant within time t + node always online	Hash functions, digital signature	Peer-to-Peer
Zero-Knowledge Rollups	zkSync	Inherited from L1 + censorship-resistant within time t + CRS always hidden	Pairings, KoE, minimal trusted setup	Centralised
	Loopring 3.8	Inherited from L1 + censorship-resistant within time t + CRS always hidden	Pairings, trusted setup	Centralised
	Starknet	Inherited from L1 + censorship-resistant within time t	Hash functions	Centralised
Optimistic Rollups	Arbitrum	Inherited from L1 + censorship-resistant within time <i>t</i> + based on Game Theory	Fraud proofs (Merkle Trees or ZKP)	Centralised
	Optimism	Inherited from L1 + censorship-resistant within time <i>t</i> + based on Game Theory	Fraud proofs (Merkle Trees or ZKP)	Centralised

Cost

		Cost		
Scalability solution type	Technology name	Fees	Withdrawal time	
Payment Channels		Funding transaction		
	Lightning Network	(+ possible hops)	1 hour to several days	
		+ closing transaction		
	Raiden Network	Similar to Lightning Network fee system	Up to 3 hours	
Zero-Knowledge Rollups	The	pprox100 times cheaper for ERC20	10 minutes to 7 hours	
	ZKJylic	pprox 30 times cheaper for ETH		
	Loopring 3.8	30 to 100 times cheaper for ERC20 and ETH 6 minutes to		
	Starknet	L1 fees (+ L2 fees in the future)	Not specified	
Optimistic Rollups	Arbitrum	Up to 10 times cheaper	Around 7 days	
	Optimism	L2 execution fee + L1 security fee	Around 7 days	

1 Introduction

- 2 Scalability Problem in Blockchain
- 3 Scalability solutions

4 Comparison

Adrià Torralba-Agell & Cristina Pérez-Solà

Conclusions

- Wide variety of Layer 2 scalability solutions
- Currently it does not seem to be a perfect solution for this problem
- Addition of security assumptions
- Solutions are still in young age, constantly evolving

-	- _
	☑ = / //
	☑=//
Ľ	

Future Work

- Add newborn zkRollup solutions
- Extend this article
 - Usability
 - * Study capabilities of smarts contracts
 - ★ Rate ease of use
 - Security
 - ★ Review Zero-Knowledge requirements
 - Cost
 - Perform experiments deploying the solutions to benchmark different properties (fees, processing time, withdrawal time, computational resources...)

Thank you for your attention! Questions?

@0xAdriaTorralba

0xAdriaTorralba

atorralbaag@uoc.edu

